Paraboloid Quadric


Autor/Urheber:
Attribution:
Das Bild ist mit 'Attribution Required' markiert, aber es wurden keine Informationen über die Attribution bereitgestellt. Vermutlich wurde bei Verwendung des MediaWiki-Templates für die CC-BY Lizenzen der Parameter für die Attribution weggelassen. Autoren und Urheber finden für die korrekte Verwendung der Templates hier ein Beispiel.
Größe:
750 x 829 Pixel (204374 Bytes)
Beschreibung:
A paraboloid. Made with Mathematica.
Lizenz:
Bild teilen:
Facebook   Twitter   Pinterest   WhatsApp   Telegram   E-Mail
Weitere Informationen zur Lizenz des Bildes finden Sie hier. Letzte Aktualisierung: Fri, 24 Oct 2025 20:25:34 GMT

Relevante Bilder


Relevante Artikel

Quadrik

Eine Quadrik ist in der Mathematik die Lösungsmenge einer quadratischen Gleichung mehrerer Unbekannter. In zwei Dimensionen bildet eine Quadrik im Regelfall eine Kurve in der Ebene, wobei es sich dann um einen Kegelschnitt handelt. In drei Dimensionen beschreibt eine Quadrik im Regelfall eine Fläche im Raum, die auch Fläche zweiter Ordnung oder quadratische Fläche genannt wird. Allgemein handelt es sich bei einer Quadrik um eine algebraische Varietät, also um eine spezielle Hyperfläche, in einem endlichdimensionalen reellen Koordinatenraum. Durch eine Hauptachsentransformation lässt sich jede Quadrik auf eine von drei möglichen Normalformen transformieren. Auf diese Weise können Quadriken in verschiedene grundlegende Typen klassifiziert werden. .. weiterlesen

Tangentialebene

Die Tangentialebene in einem Punkt an eine Fläche im dreidimensionalen Raum ist diejenige Ebene, die die Fläche in der Umgebung des Punktes am besten annähert (berührt). Sie ist damit die zweidimensionale Entsprechung zur Tangente einer Kurve. Wie im Fall der Kurve existiert eine Tangentialebene nur, wenn die Fläche hinreichend „glatt“ ist. Dies gilt zum Beispiel für die Graphen von differenzierbaren Funktionen von zwei Variablen. Eine Fläche, die einen Knick oder eine Spitze hat – zum Beispiel ein Kegel – besitzt in diesen Punkten keine Tangentialebene. .. weiterlesen