MandelbulbRot 00000-10501 VP9 slow lossless
Auch interessant sind die Formen und Konstellationen, die wir im Laufe des Videos zu Gesicht bekommen.
Von 00:00 bis 00:08,333 sehen wir eine Kugel bzw. ein tropfenförmiges geometrisches Primitiv, das sich wie zu einem Punkt zusammenzieht. (Wert der Variable zwischen 0 und 1). Der erreichte Punkt beim Wert 1 erinnert an den singulären Punkt in der Astrophysik, von dem sich das Universum aus durch den Urknall ausbreitet. Ab Wert 1 breitet sich auch das Fraktal aus und erhält bei 00:16,666 die Form der klassischen Mandelbrot-Menge in einer dreidimensionalen Interpretation. Der Wert 1 der Formel gilt auch in etwa als Wendepunkt eines Körpers von einer euklidischen Geometrie zu einer fraktalen Geometrie. Bei v² ↦ v + c ist genau eine waagrechte Symmetrieachse zu sehen.
v⁵ ↦ v + c → 00:41,666 (ca. Frame 2500) In der Mitte ist ein Kreuz zu sehen. Die Linien zeigen in Richtung der Knollen, die als Ecken eines fiktiven Quadrats fungieren könnten. Wir sehen eine Vierheit von mathematischen Gebilden.
v⁶ ↦ v + c → 00:50 (Frame 3000) Wir sehen blumenartige Strukturen, auch etwas organische.
v⁷ ↦ v + c → 00:58,333 (Frame 3500) Wir sehen deutlich sichtbare Symmetrieachsen.
v¹⁹ ↦ v + c → 02:38,333 (Frame 9500) Durch die Annäherung an die Kreisstrukturen sieht das Fraktal entlang der Animation wie ein Erguss aus einem sehr komplexen Auge aus, der sich zu einer fraktalen Struktur ergießt.
Mit einem höheren Wert der Variable gehen auch mehr Symmetrieachsen einher.
Farben: Die Farben sind aus einer Palette von Regenbogenfarben entnommen. Mit einem höheren Wert der Variable schreitet der Farbzyklus voran. Die Farbgebung ist so gewählt, dass gleiche Bereiche gleiche Farbe haben. So sind einige "Lamellen" gleichfarbig.
Relevante Bilder
Relevante Artikel
MandelknolleDie Mandelknolle ist ein dreidimensionales Fraktal. Es wurde 2009 von Daniel White und Paul Nylander konstruiert. Dazu wurde eine herkömmliche Mandelbrotmenge einer sphärischen Koordinatentransformation unterzogen. .. weiterlesen