Steiner's Roman Surface
Autor/Urheber:
Attribution:
Das Bild ist mit 'Attribution Required' markiert, aber es wurden keine Informationen über die Attribution bereitgestellt. Vermutlich wurde bei Verwendung des MediaWiki-Templates für die CC-BY Lizenzen der Parameter für die Attribution weggelassen. Autoren und Urheber finden für die korrekte Verwendung der Templates hier ein Beispiel.
Shortlink:
Quelle:
Größe:
300 x 300 Pixel (560777 Bytes)
Beschreibung:
Steiner's_en:Roman_Surface
Kommentar zur Lizenz:
Diese Datei ist unter der Creative-Commons-Lizenz „Namensnennung – Weitergabe unter gleichen Bedingungen 2.5 generisch“ (US-amerikanisch) lizenziert.
- Dieses Werk darf von dir
- verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
- neu zusammengestellt werden – abgewandelt und bearbeitet werden
- Zu den folgenden Bedingungen:
- Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
- Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.
Lizenz:
Credit:
Übertragen aus en.wikipedia nach Commons durch Keyi.
Relevante Artikel
Steinersche FlächeSteinersche Flächen sind in der Projektiven Geometrie spezielle Flächen, auf denen Scharen von Kegelschnitten liegen. Sie sind nach Jakob Steiner (1796–1863) benannt, der sie 1838 bei seinem Aufenthalt in Rom fand. Spezielle Steinerflächen werden deshalb auch Römer- oder Römische Flächen genannt. Die Steinerschen Flächen sind von Ernst Eduard Kummer und Karl Weierstraß weiter untersucht worden. Eine Steinerfläche ist eine durch quadratische Polynome in zwei Variablen gegebene Fläche im dreidimensionalen Raum: .. weiterlesen