Gaussian integer lattice
Relevante Bilder
Relevante Artikel
Gaußsche ZahlDie gaußschen Zahlen sind eine Verallgemeinerung der ganzen Zahlen in den komplexen Zahlen. Jede gaußsche Zahl liegt auf einem ganzzahligen Koordinatenpunkt der komplexen Ebene. Die gaußschen (ganzen) Zahlen bilden den Ganzheitsring des quadratischen Zahlkörpers , des Körpers der gaußschen rationalen Zahlen; englisch Gaussian rationals. Außerdem bilden die gaußschen Zahlen einen euklidischen Ring und damit insbesondere einen faktoriellen Ring. .. weiterlesen
Quadratisches ReziprozitätsgesetzDas quadratische Reziprozitätsgesetz, gelegentlich auch Gaußsches Reziprozitätsgesetz, ist ein grundlegendes Gesetz aus der Zahlentheorie, einem Teilgebiet der Mathematik. Es beschäftigt sich mit der Frage, ob es zu einer ganzen Zahl und einer ungeraden Primzahl eine Quadratzahl gibt, sodass die Differenz durch teilbar ist. Genau genommen gibt es, zusammen mit den beiden unten genannten Ergänzungssätzen, ein Verfahren an, um zu entscheiden, ob eine Zahl quadratischer Rest oder Nichtrest einer Primzahl ist. Die Entdeckung des quadratischen Reziprozitätsgesetzes durch Leonhard Euler und der Beweis durch Gauß waren die Ausgangspunkte der Entwicklung der modernen algebraischen Zahlentheorie. .. weiterlesen