Alternating Permutation qtl3


Autor/Urheber:
Attribution:
Das Bild ist mit 'Attribution Required' markiert, aber es wurden keine Informationen über die Attribution bereitgestellt. Vermutlich wurde bei Verwendung des MediaWiki-Templates für die CC-BY Lizenzen der Parameter für die Attribution weggelassen. Autoren und Urheber finden für die korrekte Verwendung der Templates hier ein Beispiel.
Größe:
740 x 740 Pixel (69992 Bytes)
Beschreibung:
Illustration der 16 Up-Down-Permutationen der Länge 5, angefangen mit der Permutation (1,3,2,5,4) (oben links) und endend mit der Permutation (4,5,2,3,1) (unten rechts).
Lizenz:
Credit:
Eigenes Werk, inspired by [1]
Bild teilen:
Facebook   Twitter   Pinterest   WhatsApp   Telegram   E-Mail
Weitere Informationen zur Lizenz des Bildes finden Sie hier. Letzte Aktualisierung: Sat, 03 Feb 2024 00:20:26 GMT

Relevante Bilder


Relevante Artikel

Alternierende Permutation

Eine alternierende Permutation ist in der Kombinatorik eine Permutation der ersten natürlichen Zahlen, bei der keine Zahl der Größe nach zwischen der vorangehenden und der nachfolgenden Zahl steht. Beginnt die Folge mit einem Anstieg, so spricht man von einer Up-Down-Permutation, beginnt sie mit einem Abstieg von einer Down-Up-Permutation. Alternierende Permutationen weisen eine Reihe von Spiegelsymmetrien auf. Jede alternierende Permutation ungerader Länge entspricht einem vollen partiell geordneten Binärbaum und jede alternierende Permutation gerader Länge einem fast vollen solchen Baum. Die Anzahlen der alternierenden Permutationen fester Länge treten als Koeffizienten in der Maclaurin-Reihe der Sekans- und der Tangensfunktion auf und stehen in engem Zusammenhang mit den Euler- und den Bernoulli-Zahlen. .. weiterlesen