Wuchtgeschoss

Ein Wuchtgeschoss ist eine Munition, die allein die kinetische Energie (KE) ihres Projektils nutzt, um die Zieloberfläche wie beispielsweise eine Panzerung zu durchdringen. Im Geschoss selbst wird deswegen auf Sprengstoff und Zünder verzichtet.

Weitere gebräuchliche Bezeichnungen für Wuchtgeschosse sind im militärischen Bereich Panzergranate (PzGr), KE-Geschoss und aufgrund der Geschossform Pfeilwuchtgeschoss. Auch der Begriff KE-Penetrator ist für das Projektil, aufgrund der Wirkungsweise und in Anlehnung an den gängigen englischen Begriff (kinetic energy weapon) abgeleitet, gebräuchlich (vom lateinischen penetrare = eindringen, durchdringen).

Begriffserklärung und Verwendung

Auch wenn der Begriff Wuchtgeschoss prinzipiell auf viele andere Geschosse wie Pistolen- oder Gewehrprojektile oder sogar Armbrustbolzen und Luftgewehrprojektile zutrifft, wird er praktisch ausschließlich für panzerbrechende Geschosse für militärische Anwendungen verwendet.

Militärische Wuchtgeschosse werden heute praktisch weltweit von allen Armeen zum Zerstören von mittel- bis starkgepanzerten Zielen eingesetzt. Sie werden in erster Linie verwendet, um Kampfpanzer, Schützenpanzer oder Bunker zu bekämpfen. Aufgrund der Veränderung der Kriegsführung, weg vom direkten Feuerkampf zwischen Kampfpanzern, hin zur asymmetrischen Kriegsführung, haben sie allerdings heute etwas von ihrer zentralen und herausragenden Rolle in der militärischen Ausrüstung verloren.

Aufbau und Wirkung

Material

Das eigentliche Geschoss besteht dabei aus Metall, einer gegebenenfalls gehärteten Legierung oder einer Keramik, jeweils von möglichst großer Dichte. Durch die große Dichte und Härte wird der Großteil der kinetischen Energie (Wucht) zum Durchdringen der Panzerung aufgewendet. Für Wuchtgeschosse wird heute u. a. Wolframcarbid und für Geschosse vom Typ APFSDS (s. u.) in der Regel eine gesinterte Wolfram-Schwermetall-Legierung[1] oder abgereichertes Uran (engl. DU = depleted uranium) verwendet, wodurch letztere oft als Uranmunition bezeichnet werden.

Wirkprinzip

Das Projektil verdrängt durch die Konzentration seiner hohen kinetische Energie auf eine relativ geringe Fläche beim Auftreffen das Material der Panzerung, das aufgrund seiner Trägheit nicht mit elastischer oder plastischer Verformung reagieren kann, um so die Energie zu absorbieren. Das Wirk- und Eindringprinzip ist dabei vergleichbar mit einem Druckluftnagler, der große kinetische Energie auf der sehr kleinen Nagelspitze konzentriert.

Beim Eindringen in die Panzerung wird die kinetische Energie teilweise in Druck und damit auch hohe Temperatur umgesetzt. Beim Durchdringen der Panzerung entsteht durch die starke Reibung des Penetrators mit den Panzerplatten ein „Splitterregen“ brennenden Materials, das mit dem Penetrator mit sehr hoher Geschwindigkeit nach innen schießt.

Die Wirkung im Ziel beruht dabei auf dem Zersplittern der Panzerung und des Projektils auf der Rückseite der durchdrungenen Zielfläche sowie aus dem Hineinschießen des geschmolzenen Materials und pyrophoren Partikeln von Panzerung und Penetrator, die annähernd eine explosive Wirkung besitzen. Dabei wird die Besatzung verwundet oder getötet, das Ziel durch die Splitterwirkung und Feuer innen stark beschädigt und häufig zusätzlich durch Sekundärschäden wie ein Entzünden von Kraftstoff oder die Explosion der im Ziel vorhandenen Munition zerstört.

Bei der Ausführung als unterkalibrige Munition hat das eigentliche Projektil – der sogenannte „Penetrator“ – die Form eines Pfeils und wird mit einem Treibkäfig (engl. sabot) im Geschützrohr geführt. Der Treibkäfig, der normalerweise aus Kunststoff besteht, dient der Kaliberanpassung sowie der Abdichtung der Kanone und fällt unmittelbar beim Verlassen der Rohrmündung durch den hohen Luftwiderstand ab. Derartige Munition wird meist Treibspiegel- oder Treibkäfigmunition genannt oder trägt die Abkürzung DS (engl. discarding sabot) in der Kurzbezeichnung.

Auch moderne Verbundpanzerungen, beispielsweise die Chobham-Panzerung, Mexas, oder Reaktivpanzerung bieten gegenüber den neuesten Wuchtgeschossen aus großkalibrigen Panzerkanonen nur bedingten Schutz, insbesondere bei weniger als etwa einem Kilometer Schussentfernung.

Entstehung

Die ersten Wuchtgeschosse aus Wolfram wurden bereits von der deutschen Wehrmacht mit Beginn des Zweiten Weltkriegs verwendet (Bezeichnung: „Panzergranate ROT“ oder Panzergranate 40). Frühe als Wuchtgeschosse ausgeführte Munitionssorten waren noch Vollkalibergeschosse. Die Rohre verfügten über einen Drall mit Zügen und Feldern, was die Projektile zur Stabilisierung in Längsrotation versetzte. Heutige Wuchtgeschosse größerer Kaliber, die beim Kampfpanzer normalerweise aus Glattrohrkanonen verschossen werden, sind unterkalibrig und werden zur Stabilisierung mit Finnen oder Leitwerken versehen.

Typen panzerbrechender Wuchtgeschosse

Da es in der deutschen Sprache kaum eindeutige Bezeichnungen für die unterschiedlichen Arten von Wuchtgeschossen gibt, wird die nachfolgende Übersicht nach den gängigen englischen Abkürzungen strukturiert:

AP

Die Bezeichnung AP steht für armor-piercing (panzerbrechend) und stellt die erste Generation panzerbrechender Geschosse dar. AP steht aber auch grundsätzlich für panzerbrechende Munition. Dabei bestanden die Geschosse aus einem Material mit sehr hoher Dichte wie Wolfram und durchschlugen die Panzerungen auf Grund der kinetischen Energie, die sie beim Auftreffen auf das Ziel abgaben. AP-Geschosse hatten allerdings Grenzen in ihrer Wirkung, da durch die schlechte aerodynamische Form der Luftwiderstand erhöht und so die Geschwindigkeit am Ziel herabgesetzt wurde. Das Problem der AP-Munition ist der Initialschock, der auf das harte und damit meist spröde Geschoss wirkt. Dies führte häufig zu einem Zersplittern des Projektils an der Außenseite der Panzerung. Um dieses Problem zu lösen, wurde die APC entwickelt.

API

Die Abkürzung API (auch AP-I geschrieben) steht für Armor Piercing, Incendiary. Hierbei wird dem AP-Geschoss ein entzündlicher Stoff (zum Beispiel Zirconium) zugesetzt, um einen zusätzlichen Brandeffekt nach dem Durchdringen der Panzerung zu erzeugen. Dies soll die Zerstörungswahrscheinlichkeit bei einem Treffer durch entzündeten Treibstoff, einen Cook off der gelagerten Munition oder durch anderweitige Brand- und Raucheinwirkung erhöhen. Dieser Typ wird besonders von klein- bis mittelkalibrigen Waffen gegen leicht gepanzerte Ziele verschossen.

APC

APC steht für Armor Piercing, Capped (panzerbrechend, mit Kappe). Hier wurde die Spitze des Penetrators mit einer Kappe aus weicherem Material versehen, die den Aufprallschock dämpft, den eigentlichen Wirkkörper vor dem Zersplittern schützt und gleichzeitig das Abprallen von der Panzerung bei einem flachen Aufprallwinkel verhindern soll.[2] Er trifft dann erst nach der Verformung der Kappe auf die Panzerung, um sie zu durchdringen.[3] Bei der Verformung der Kappe und unterstützt durch den Drall wurde das Geschoss auch gedreht und der Aufprallwinkel vergrößert, so dass die Stärke der zu durchdringenden Panzerung durch den größeren Winkel verringert wurde. Diese Kappe verbesserte zwar das Eindringverhalten des Projektils, hatte aber durch die Optimierung der Form auf die Dämpfung des Aufprallschocks aerodynamische Nachteile, wodurch das Geschoss während des Fluges instabil wurde. Durch die Dämpfung verringert sich damit die Eindringgeschwindigkeit des Wirkkörpers und die Durchschlagskraft wurde herabgesetzt.[2]

APBC

Dem Umstand der ungünstigen Aerodynamik der AP begegnete man zuerst durch Verwendung einer weiteren Ummantelung, der ballistischen Haube. Sie wurde aus weichem Metall gefertigt und diente rein der Optimierung der Ballistik. Diese Haube verformte oder zerlegte sich beim Aufprall auf ein Ziel und das Geschoss folgte dann dem Wirkprinzip der AP. APBC bedeutet Armour Piercing Ballistic Cap (panzerbrechend, mit ballistischer Haube).

APCBC

APCBC:
1. ballistische Haube aus Weicheisen
2. panzerbrechender Stahl-Penetrator
3. Sprengladung
4. Bodenzünder (mit Zeitverzögerung, explodiert nach Durchschlag der Panzerung innerhalb des Ziels)
5. Führungsringe

Nachdem weder die APC noch die APBC sich als ideal herausgestellt hatten, wurde deren Aufbau in einer neuen Munitionsart kombiniert. So entstand die APCBC (Armour Piercing Capped Ballistic Cap, panzerbrechend, mit Kappe und ballistischer Haube).

Die im Zweiten Weltkrieg weit verbreitete deutsche Panzergranate 39 war ein Beispiel für eine APCBC. Allerdings ist sie eine Mischform der APCBC, da ein Wuchtgeschoss mit einer geringen Ladung Sprengstoff versehen wurde, die das Geschoss nach dem Durchschlagen der Oberfläche zur Explosion bringen sollte, und war darüber hinaus mit einem pyrotechnischen Satz (Leuchtspur) versehen. Die Klassifizierung wäre nach heutiger Nomenklatur APCBC-HE-T (Armour Piercing Capped Ballistic Cap-High Explosive-Tracer).

APCR

APCR (Armour Piercing, Composite Rigid), auch HVAP (High Velocity Armour Piercing), Hartkernmunition oder Hartkerngeschoss, wurden 1940 für die 37-mm-Kanone des deutschen Panzerkampfwagen III entwickelt und gegen Mitte des Zweiten Weltkriegs auch von der US-amerikanischen Armee eingesetzt, um den neuen deutschen Panzertypen wie Panzer V Panther und Panzer VI Tiger zu begegnen, deren starke Panzerungen sich mit herkömmlichen, bisher verwendeten AP- oder APC-Geschossen nicht mehr durchschlagen ließen. APCR-Geschosse verfügten im Inneren des Geschosses über einen weiteren noch härteren Kern, der kleiner als das verwendete Kaliber war und auch die Panzerungen der neuen deutschen Panzer durchschlagen konnte.[4]

Dieser Munitionstyp wird auch in Langwaffen verwendet, etwa militärischen Sturmgewehren und Scharfschützengewehren, wenn materialschädigende Wirkung benötigt wird, etwa um Motoren von Fahrzeugen außer Betrieb zu setzen, oder wenn Gegner mit Körperpanzerungen zu bekämpfen sind.

APCNR

APCNR (Armour Piercing, Composite Non-Rigid) sind im Aufbau mit den APCR sehr ähnlich, nur werden sie aus konifizierten (zur Mündung hin abnehmendes Kaliber) Geschützrohren verschossen. Die beiden Möglichkeiten für die Konifizierung waren zum einen, das Rohr selbst zu konifizieren, zum anderen nur an der Mündung durch eine Art Aufsatz eine Verjüngung zu erreichen. Das Vollkalibergeschoss verlässt dann die Mündung in einem kleineren Durchmesser als ursprünglich, ist also unterkalibrig und erreicht durch das Einschnüren des Geschosses eine sehr stabile Flugbahn und Geschossgeschwindigkeit. Die APCNR konnte sich aber aufgrund ihrer Komplexität und des hohen Rohrverschleißes nicht dauerhaft durchsetzen. Der Nachfolger der APCNR wurde die APDS-Munition.

APDS

APDS-Munition (Armor Piercing, Discarding Sabot) ist drallstabilisiert und wird unter anderem bei älteren Zugrohrkanonen (zum Beispiel der L7) oder bei Waffen mittleren Kalibers wie schweren Maschinengewehren und Maschinenkanonen verwendet. Es handelt sich um ein AP-Geschoss mit Treibkäfig. Durch das unterkalibrige Geschoss ist die Flugbahn stabiler und die Geschwindigkeit höher. Ein Beispiel ist die „20 mm APDS-DU“ (APDS–Depleted Uranium). Die Munition wurde kurz vor dem Zweiten Weltkrieg in Frankreich durch die Firma Brandt entwickelt.[4]

FAPDS

Die zerbrechliche panzerbrechende Treibkäfigmunition (Frangible Armour Piercing Discarding Sabot) ist eine Weiterentwicklung der APDS. Sie zerfällt während der Penetration der Panzerungsschichten in immer mehr und immer kleinere Teile. Dies hat einen ähnlichen Effekt, wie ihn eine innerhalb der Panzerung abgefeuerte Schrotladung hätte: Ein bloßes Durchschießen des Zielobjekts wird vermieden und durch die kaskadierende Zerstörung werden Verluste und Schäden vergrößert.

APFSDS

Da drallstabilisierten Geschossen hinsichtlich der Mündungsgeschwindigkeit und Länge und somit auch in der Durchschlagskraft Grenzen gesetzt sind, wurden die panzerbrechenden, flügelstabilisierten Treibkäfiggeschosse entwickelt (APFSDS für Armor Piercing Fin-Stabilized Discarding Sabot). Sie stellen heute den letzten Entwicklungsstand von im Militär eingeführten großkalibrigen Wuchtgeschossen dar. Die heute üblichen Geschosse werden normalerweise aus glatten Geschützrohren ohne Mündungsbremse verschossen und bestehen aus einem leichten Mantel – dem Treibkäfig – und einem dünnen, spitzen, schweren Metallpfeil (Flechette) – dem Penetrator. Er wird mit Flossen oder Finnen stabilisiert. Der Durchmesser des Penetrators ist dabei deutlich kleiner als das Kaliber der Kanone, das heißt, es handelt sich dabei um ein Unterkalibergeschoss. Das Geschoss hat eine hohe Querschnittsbelastung, was dessen Durchschlagskraft erhöht.

Diese Munitionsart ist heute bei Kampfpanzern normalerweise als hülsenlose Munition konzipiert mit einer Treibladung hauptsächlich aus Nitrozellulose.

Die Mündungsgeschwindigkeit moderner APFSDS-Projektile beträgt zwischen 1400 und 1800 Meter pro Sekunde (m/s), das heißt teilweise mehr als fünffache Schallgeschwindigkeit. Ein Beispiel für ein derartiges Geschoss ist die DM 53, die heute im Leopard 2 vom deutschen Heer eingesetzt wird. Sie erreicht in Kombination mit der 120-mm-Glattrohrkanone L/55 von Rheinmetall eine Mündungsgeschwindigkeit von bis zu 1750 m/s. Laut Angaben der Bundeswehr kann damit eine Durchschlagsleistung von 810 mm Panzerstahl (nach RHA) auf eine Entfernung von 2000 m erreicht werden.[5] Genaue Angaben über die Durchschlagsfähigkeit und Mündungsgeschwindigkeit werden oft nicht bekannt gegeben.

Übersicht über Geschossenergie und Durchschlagsleistung

Veranschaulichung der kinetischen Energie

Eine Lokomotive mit einer Masse von 50 Tonnen und einer Geschwindigkeit von 80 km/h (22,2 m/s) besitzt eine kinetische Energie von rund 12,3 Megajoule (MJ).

Die 2005 in der Bundeswehr eingeführte panzerbrechende Wuchtmunition DM 63 mit einem Kern aus Wolfram-Schwermetall[6], die aus einer 120-mm-Glattrohrkanone L/55 abgefeuert wird, erreicht bei einer Mündungsgeschwindigkeit von 1750 m/s und einer gegenüber der Vorgängerausführung erhöhten Penetratormasse (rund 8,5 kg) ungefähr 13 MJ an der Mündung.[7]

APFSDS-Durchschlagsleistung

Durchschlagsleistung verschiedener APFSDS-Munitionsarten
MunitionstypEntwicklungsjahrEntwicklungslandPenetratorDurchschlagskraft
(mm RHA)
Winkel
(in°)
Entfernung
(in m)
115 mm 3BM-31961Sowjetunion 1955 SowjetunionStahl300[8]01000
105 mm L64A41978Vereinigtes Konigreich Vereinigtes KönigreichWolframkarbid250[9]01000
105 mm M111Ende der siebziger JahreIsrael IsraelWolframkarbid360[9]02000
105 mm M7741979Vereinigte Staaten Vereinigte Staatenabgereichertes Uran385[9]02000
120 mm DM 131979Deutschland DeutschlandWolframlegierung230[10]02200
120 mm M8271979Vereinigte Staaten Vereinigte StaatenWolframkarbid52001000
105 mm OLF105F11981Frankreich FrankreichWolframkarbid420[9]02000
105 mm M8331983Vereinigte Staaten Vereinigte StaatenWolframkarbid480[9]01000
120 mm DM 231985Deutschland DeutschlandWolframlegierung48001000
120 mm M8291985Vereinigte Staaten Vereinigte Staatenabgereichertes Uran54001000
125 mm 3BM32 „Want“1987Sowjetunion Sowjetunionabgereichertes Uran50001000
105 mm OLF105E21988Frankreich Frankreichabgereichertes Uran540[9]02000
120 mm DM 23A11988Deutschland DeutschlandWolframlegierung54001000
125 mm 3BM42 „Mango“1988Sowjetunion SowjetunionWolframkarbid44001000
120 mm M829A11989Vereinigte Staaten Vereinigte Staatenabgereichertes Uran70001000
125 mm 3BM48 „Swinez“1991Sowjetunion Sowjetunionabgereichertes Uran60001000
120 mm M829A21992Vereinigte Staaten Vereinigte Staatenabgereichertes Uran74001000
120 mm CHARM11994Vereinigtes Konigreich Vereinigtes Königreichabgereichertes Uran54001000
120 mm OLF120G1Anfang der neunziger JahreFrankreich FrankreichWolframkarbid54001000
120 mm DM 431995Deutschland DeutschlandWolframlegierung64001000
120 mm CHARM31999Vereinigtes Konigreich Vereinigtes Königreichabgereichertes Uran74001000
120 mm DM 532000Deutschland DeutschlandWolframlegierung600–64001000
125 mm 3BM59 „Swinez“-12002Russland Russlandabgereichertes Uran74001000
125 mm 3BM60 „Swinez“-22002Russland RusslandWolframkarbid640–66001000
120 mm DM 632004?Deutschland DeutschlandWolframlegierung75001000
120 mm M829A32003Vereinigte Staaten Vereinigte Staatenabgereichertes Uran80001000
125 mm 3BM69 „Wakuum“-12005Russland Russlandabgereichertes Uran90001000
125 mm 3BM70 „Wakuum“-22005Russland RusslandWolframkarbid80001000

Geeignete Beschleuniger

Im Einsatz werden Wuchtgeschosse durch konventionelle Treibladungen in Kanonen beschleunigt. Prinzipiell wären auch Railguns und zweistufige Leichtgaskanonen zum Abschuss von Wuchtgeschossen geeignet. Damit könnte eine noch höhere Geschwindigkeit und damit kinetische Energie erreicht werden. Derartige Beschleuniger werden allerdings bisher nur in der Forschung eingesetzt; es existieren keine einsatzfähigen Waffensysteme.

Schutzmaßnahmen

Es existierten bisher keine wirkungsvollen Schutzmaßnahmen gegen moderne großkalibrige Hochleistungswuchtgeschosse. Selbst modernste Panzerungen wurden bei Kampfentfernungen von mehreren Kilometern immer noch durchschlagen. Ob durch die Weiterentwicklung der russischen Kampfpanzer T-80, T-90 und T-14 dieses Prinzip noch Gültigkeit besitzt, ist auf Grund der Geheimhaltung offen.[11]

Durch die Entwicklung neuer panzerbrechender Munitionsarten und Beschleunigerkonzepte auf der einen Seite und moderner Panzerungskonzepte in Verbindung mit abstandsaktiven Schutzmaßnahmen – insbesondere die sogenannten „Hardkill-Systeme“ auf der anderen Seite – spitzt sich der „Wettbewerb“ wieder zu. Ob gerade die Hardkill-Systeme in der Lage sein werden, derartige Geschosse in ihrer Wirkung zu beeinträchtigen, den Treffer zu verhindern oder den anfliegenden Penetrator zu zerstören, hat die Praxis im Einsatz bisher noch nicht gezeigt.

Literatur

  • Rolf Hilmes: Meilensteine der Panzerentwicklung: Panzerkonzepte und Baugruppentechnologie. Hrsg.: Motorbuch. 1. Auflage. Stuttgart 2020, ISBN 978-3-613-04277-3, S. 53 ff.
  • Beat Kneubuehl: Geschosse (Band 2) – Ballistik, Wirksamkeit, Messtechnik. Motorbuch, Stuttgart 2004, ISBN 978-3-7276-7145-6.
  • Beat Kneubuehl: Geschosse (Band 1) – Ballistik, Treffsicherheit, Wirkungsweise. Motorbuch, Stuttgart 1998, ISBN 978-3-7276-7119-7.

Weblinks

Wiktionary: Wuchtgeschoss – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. MBT Revolution – Einsatzorientiertes, modulares Upgrade für Kampfpanzer. 14. Juni 2010, abgerufen am 12. März 2022.
  2. a b Nathan Okun: Projectile AP Caps. Abgerufen am 24. Mai 2023.
  3. AMORDLISTA, Preliminär ammunitionsordlista. Försvarets materielverk (FMV), huvudavdelningen för armémateriel, Schweden 1979, S. 33, 35 (schwedisch).
  4. a b Richard Ogorkiewicz: Tanks 100 years of evolution. Bloomsbury Publishing, 2015, ISBN 1-4728-1305-7, S. 255 (eingeschränkte Vorschau in der Google-Buchsuche).
  5. Typenblatt 02/2006 – Leopard 2. www.y-punkt.de, archiviert vom Original am 7. Juni 2014; abgerufen am 14. September 2013.
  6. MBT Revolution – Einsatzorientiertes, modulares Upgrade für Kampfpanzer. 14. Juni 2010, abgerufen am 12. März 2022.
  7. Paul-Werner Krapke: Leopard 2 sein Werden und seine Leistung. Seite 9 der Ergänzung von Rolf Hilmes, Books on Demand GmbH, Norderstedt 2004, ISBN 3-8334-1425-1
  8. Tankograd: T-62. thesovietarmourblog.blogspot.com, abgerufen am 7. Oktober 2018.
  9. a b c d e f 105 mm Ammo. echo501.tripod.com, abgerufen am 13. November 2018 (englisch).
  10. Munition der 120-mm-Kanone von Rheinmetall. www.kotsch88.de, abgerufen am 13. November 2018.
  11. Warum die Politik dem Leo Urangeschosse verweigerte. 26. April 2015, abgerufen am 24. Juli 2018.

Auf dieser Seite verwendete Medien

Flag of the Soviet Union (1955-1980).svg
(c) I, Cmapm, CC BY-SA 3.0
The flag of the Soviet Union (1955-1991) using a darker shade of red.
Schematic of the flag as adopted in 1955.
Flag of the Soviet Union (dark version).svg
(c) I, Cmapm, CC BY-SA 3.0
The flag of the Soviet Union (1955-1991) using a darker shade of red.
Schematic of the flag as adopted in 1955.
Flag of the United Kingdom.svg
Flagge des Vereinigten Königreichs in der Proportion 3:5, ausschließlich an Land verwendet. Auf See beträgt das richtige Verhältnis 1:2.
Flag of the United Kingdom (3-5).svg
Flagge des Vereinigten Königreichs in der Proportion 3:5, ausschließlich an Land verwendet. Auf See beträgt das richtige Verhältnis 1:2.
ArmorPiercingShell.png
Projektil (APCBC) - Wuchtgeschoss, panzerbrechend mit Weicheisen-Kappe und ballistischer Haube
  1. ballistische-Kappe aus WSeicheisen
  2. panzerbrechende Stahl-Penetrator
  3. Sprengladung desensibilisiert/träge
  4. Zünder (mit Zeitverzögerung, explodiert nach Durchschlag der panzerung, innerhald des Ziels)
  5. Führungsringe (vorn, hinten)
Obus 501556 fh000022.jpg
Autor/Urheber: David Monniaux, Lizenz: CC BY-SA 3.0
Nation/Defense days, Esplanade des Invalides, Paris, France, September 24-25, 2005
TRESPI-5 APFSDS.PNG
Autor/Urheber: Der ursprünglich hochladende Benutzer war Karl Bednarik in der Wikipedia auf Deutsch, Lizenz: CC BY-SA 3.0
APFSDS
Japanese APFSDS (cropped 2).jpg
Autor/Urheber: natou, Lizenz: CC BY 3.0
japanese type-90 tanks using APFSDS at Japan Ground Self-Defense Force Public Information Center Asaka Saitama Japan.
Destroyed iraqi T-55 tank.JPEG
A close-up view of the turret of an Iraqi T-55 main battle tank destroyed during Operation Desert Storm.