In der Theorie der Zufallsmatrizen bezeichnet das Wishart Ensemble den Raum der Wishart-Matrizen. Analog zu Dysons -Gaußschem Ensemble spricht man auch vom -Wishart Ensemble für (reell) Wishart, komplex Wishart und Quaternion Wishart. Häufig verwendet man aber auch die technische Bezeichnung Laguerre, somit erhält man die -Ensembles LOE, LUE und LSE, benannt nach der Invarianz des Maßes unter der entsprechenden kompakten Lie-Gruppen-Konjugation.
Sei eine Zufallsmatrix, die der matrixvariaten Normalverteilung folgt. Dann ist
Wishart-verteilt. Das heißt, eine -Wishart-Matrix besteht aus sich nicht wiederholenden Elementen. Falls spricht man von einer zentrierten Wishart-Matrix.
Wenn allerdings spricht man von einer nicht-zentrierten Wishart-Matrix, geschrieben (siehe Abschnitt Nicht-zentrierte Wishart-Verteilung). Explizite Formeln sind für diese Matrix in hoher Dimension äußerst kompliziert. Man kann jedoch die charakteristische Funktion angeben.[3]
Falls einer komplexen matrixvariaten Normalverteilung folgt, dann ist komplex Wishart-verteilt.
Eigenwertdichte
Sei und die geordneten Eigenwerte. Weiter sei das normalisierte Haarsche Maß über der orthogonalen Gruppe und , dann ist die Eigenwertdichte[4]
,
wobei .
Für das Integral über der orthogonalen Gruppe gibt es keine bekannte geschlossene Formel. Allerdings kann man mit Hilfe der Theorie der zonalen Polynome eine unendliche Reihenentwicklung für das Integral finden.
Für komplexe Wishart-Matrizen geht das Integral über die unitäre Gruppe, welches man mittels dem Harish-Chandra-Itzykson-Zuber-Integral berechnen kann.
wird auch als verallgemeinerte Varianz bezeichnet.
Nicht-zentrierte Wishart-Verteilung
Eine symmetrische positive -Zufallsmatrix folgt der nicht-zentrierten Wishart-Verteilung, geschrieben , falls sie folgende Wahrscheinlichkeitsdichte besitzt:[5]
Der Wishart-Prozess bzw. dessen Eigenwertprozess ist das Analogon zu Dysons brownscher Bewegung für Kovarianzmatrizen. Sei der Raum der semidefiniten reellen -Matrizen, und eine -Matrix-Brownsche-Bewegung. Weiter sei und sowie ein Parameter. Der Wishart-Prozess ist die starke Lösung folgender stochastischen Differentialgleichung:[6]
Betrachtet man das Wishartsche unitäre Ensemble, so wird der Prozess auch häufig Laguerre-Prozess genannt.
Finanzmodelle mit multivariater wishartschen stochastischen Volatilität haben mehr Flexibilität als das klassische Black-Scholes-Modell.
Asymptotisches Spektralmaß
Für unendlich große Standard-Wishart-Matrizen (sowie auch für allgemeinere Formen) gilt für die Eigenwerte das Marchenko-Pastur-Gesetz.
Marchenko-Pastur-Gesetz
Sei und so dass , dann konvergiert das empirische Spektralmaß von auf schwach nach[7]
Diese Summe lässt sich aber auch als das Produkt eines -variaten Zufallsvektors mit seiner Transponierten auffassen:
wobei .
Hat man nun unabhängige Zufallsvektoren , fasst man diese in einer -Zufallsmatrix zusammen:
.
Multipliziert man mit ihrer Transponierten, erhält man eine (symmetrische) -Zufallsmatrix, die der Wishart-Verteilung mit Freiheitsgraden folgt:
mit .
Erläuterungen
Betrachte Observationen mit Parametern . Sei , dann ist
.
Das heißt, die Wishart-Matrix ist in diesem Beispiel die Summe aus zehn verschiedenen Matrizen.
Statistisches Beispiel
Seien i.i.d.-dimensionale Zufallsvektoren mit Verteilung . Definiere die Schätzfunktionen für den Erwartungswert und die Varianz
Dann gilt
Erläuterung
Das heißt, die unnormalisierte Kovarianzmatrix der Zufallsstichprobe aus einer multivariaten Normalverteilung folgt der Wishart-Verteilung. Für den Maximum-Likelihood-Schätzer für die Kovarianzmatrix gilt:
Weblinks
A.V. Prokhorov: Wishart distribution. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).
↑Alan J. Izenman: Modern multivariate statistical techniques: Regression, classification, and manifold learning. 1. Auflage. Springer-Verlag, New York, ISBN 978-0-387-78189-1, S.63.
↑Harald Uhlig: On Singular Wishart and Singular Multivariate Beta Distributions. In: The Annals of Statistics, Ann. Statist. Nr.22, 1994, doi:10.1214/aos/1176325375.
↑T. W. Anderson: The Non-Central Wishart Distribution and Certain Problems of Multivariate Statistics. In: The Annals of Statistics, Ann. Statist. Nr.17, 1946, doi:10.1214/aoms/1177730882.
↑Alan T. James: Distributions of Matrix Variates and Latent Roots Derived from Normal Samples. In: The Annals of Mathematical Statistics, Ann. Statist. Nr.35, 1964, doi:10.1214/aoms/1177703550.
↑Alan J. Izenman: Modern multivariate statistical techniques: Regression, classification, and manifold learning. 1. Auflage. Springer-Verlag, New York, ISBN 978-0-387-78189-1, S.64.