TrueNorth

16 TrueNorth Chips auf einem Entwickler-Board

TrueNorth ist ein neuromorpher Prozessor der zweiten Generation von IBM, welcher im Rahmen des SyNAPSE-Programms der DARPA entwickelt wurde. Der Chip ist von der Funktionsweise des Neocortex inspiriert und bildet diesen funktional stark vereinfacht ab. Er basiert damit nicht auf der Von-Neumann-Architektur,[1] wird aber dennoch aus üblichen Materialien und Prozessen hergestellt.[2]

Technische Daten

Prinzipschaltbild eines „Neurosynaptic Core“

TrueNorth besteht aus einem Die mit 4096 spike-neuralen Netzwerk-Cores mit insgesamt 1 Million künstlicher Neuronen (das menschliche Gehirn hat ca. 100 Milliarden Neuronen) und 256 Millionen Synapsen, sowie 400 Mebi SRAM, mit denen er synaptische Operationen pro Sekunde pro Watt (SOPS) schafft[3]. Er hat eine Leistungsdichte von und eine Leistungsaufnahme von 70 mW bis 100 mW.[1] Der Chip arbeitet nebenläufig, ungetaktet und fehlertolerant. Auch weisen auf TrueNorth-basierte Systeme eine hohe Skalierbarkeit auf.

Die Herstellung erfolgt in einem 28 nm-Prozess und die Chips können beliebig zusammen geschaltet werden.[4] Neue Technologien wie Memristoren kommen bei TrueNorth nicht zum Einsatz.

Anwendung

TrueNorth dient insbesondere der Simulation von rekurrenten neuronalen Netzwerken und ist damit ideal für Anwendungen in der Musteranalyse, wie z. B. der Bild- und Spracherkennung, sowie der Sensorik und Regelungstechnik. TrueNorth-basierte Systeme sollen zukünftig in Watson integriert werden.[1]

Im Jahre 2014 hat das Air Force Research Laboratory (AFRL) als erster einen TrueNorth-Prototypen erworben. Ende 2016 wurde bekannt, dass ein TrueNorth-Chip im Vergleich mit einem NVIDIA Tegra K1 (auf einem Jetson TX-1 Entwicklerboard) bei der Erkennung von Fahrzeugen auf dem MSTAR-Datensatz[5] die gleiche Erkennungsrate lieferte, jedoch nur ein zwanzigstel bis ein dreißigstel des Energiebedarfs hatte. Nachteilig wurden die – aufgrund fehlender Massenproduktion – hohen Kosten von TrueNorth, sowie das Fehlen passender Softwarebibliotheken gesehen. Das AFRL legte jedoch nahe, dass sich der TrueNorth-Chip in Umgebungen mit begrenzter Energieverfügbarkeit – etwa in autonomen Fahrzeugen, Drohnen und Satelliten – empfehlen würde.[6]

Weiterentwicklung

Der Prozessor wird zum Cortical Processor weiterentwickelt und soll zukünftig einen Hierarchischen Temporalspeicher (HTM) nativ in Hardware implementieren.[7]

Weblinks

Quellen

  1. a b c Dharmendra S. Modha: Introducing a Brain-inspired Computer: TrueNorth's neurons to revolutionize system architecture. IBM Research, abgerufen am 7. August 2014 (englisch).
  2. Don Clark: Gehirn-Chip mit normaler Prozessor-Technik. Die Welt, 11. August 2014, abgerufen am 12. August 2014.
  3. Introducing a Brain-inspired Computer. TrueNorth's neurons to revolutionize system architecture // IBM Zitat: "46 billion synaptic operations per second, per watt"
  4. IBM stellt künstliches Gehirn vor. Abgerufen am 1. Oktober 2014.
  5. [1]
  6. Andrew Rosenblum: Air Force Tests IBM’s Brain-Inspired Chip as an Aerial Tank Spotter. Technology Review, 11. Januar 2017, abgerufen am 13. Januar 2017 (englisch).
  7. Werner Pluta: Cortical Processor: Darpa lässt Gehirncomputer entwickeln. In: Golem. 21. August 2013, abgerufen am 8. Januar 2015.

Auf dieser Seite verwendete Medien

Neurosynaptic core.svg
Autor/Urheber:MovGP0, Lizenz: Copyrighted free use
Neurosynaptic Core von TrueNorth
DARPA SyNAPSE 16 Chip Board.jpg

A circuit board with 16 of the new brain-inspired chips in a 4×4 array along with interface hardware. The board is being used to rapidly analyze high-resolution images.

DARPA-funded researchers have developed one of the world’s largest and most complex computer chips ever produced—one whose architecture is inspired by the neuronal structure of the brain and requires only a fraction of the electrical power of conventional chips.

Designed by researchers at IBM in San Jose, California, under DARPA’s Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program, the chip has more than five billion transistors and boasts more than 250 million “synapses,” or programmable logic points, analogous to the connections between neurons in the brain. That’s still orders of magnitude fewer than the number of actual synapses in the brain, but a giant step toward making ultra-high performance, low-power neuro-inspired systems a reality.

Many tasks that people and animals perform effortlessly, such as perception and pattern recognition, audio processing and motor control, are difficult for traditional computing architectures to do without consuming a lot of power. Biological systems consume much less energy than current computers attempting the same tasks. The SyNAPSE program was created to speed the development of a brain-inspired chip that could perform difficult perception and control tasks while at the same time achieving significant energy savings.

The SyNAPSE-developed chip, which can be tiled to create large arrays, has one million electronic “neurons” and 256 million electronic synapses between neurons. Built on Samsung Foundry's 28nm process technology, the 5.4 billion transistor chip has one of the highest transistor counts of any chip ever produced. Each chip consumes less than 100 milliWatts of electrical power during operation. When applied to benchmark tasks of pattern recognition, the new chip achieved two orders of magnitude in energy savings compared to state-of-the-art traditional computing systems.

A technical paper on the chip is available at http://www.sciencemag.org/content/345/6197/668.full