Tautomerie

Die Tautomerie (von gr. tautó „das Gleiche“ und meros „Anteil“) bezeichnet in der Chemie eine besondere Form der Isomerie. Sie wurde 1876 von Alexander Michailowitsch Butlerow (1828–1886) entdeckt und 1885 von Conrad Peter Laar als Begriff eingeführt.

Übersicht
A–X–Y=Z mit A = H+X=Y–Z–APrototropie
H–C–C=OC=C–O–HKeto-Enol
H–C–N=OC=N–O–HNitro-AcinitroNitroso-Oxim
H–C–N=NC=N–N–HAzo-HydrazoHydrazo-Azo
H–N–C=ON=C–O–HAmid-ImidsäureLactam-Lactim
H–C–C=NC=C–N–HImin-Enamin
Ring-Ketten-Tautomerien
A–X–Y=Z mit A = OHAnionotropie
HO–C–C=CC=C–C–OH(siehe unten)
A–X–YX–Y–Hdyadische Tautomerie

Wenn Moleküle zwar die gleiche Summenformel besitzen, aber die einzelnen Atome unterschiedlich verknüpft sind, spricht man von Konstitutionsisomeren. Als Tautomere bezeichnet man Isomere, die durch die Wanderung einzelner Atome oder Atomgruppen schnell ineinander übergehen, d. h. die beiden Isomere in einem dynamischen chemischen Gleichgewicht miteinander stehen.[1][2] Aufgrund des schnellen Gleichgewichts lassen sich die einzelnen Tautomere oft nicht isolieren; das Mengenverhältnis der Tautomere untereinander ist konstant.

Tautomere unterscheiden sich oft in der Stellung einer Gruppe und in der Stellung einer Doppelbindung:

Als wandernde Gruppe kommen einwertige Kationen wie das Proton oder einwertige Anionen wie Chlorid-, Hydroxid- oder Acetat-Ionen in Frage. Wird eine Doppelbindung durch eine Ringbildung aus Einfachbindungen ersetzt, spricht man von der Ring-Ketten-Tautomerie.[3]

Die Tautomerie darf dabei nicht mit der Mesomerie verwechselt werden, bei der lediglich dasselbe Molekül durch verschiedene Grenzformeln beschrieben wird.

Prototropie

Bei der Prototropie wechselt ein Proton seinen Platz im Molekül:[3]

Keto-Enol-Tautomerie

Die häufigste Form der Tautomerie ist die Keto-Enol-Tautomerie. Wegen der Polarisierung der C–O-Doppelbindung durch die große Elektronegativität des Sauerstoffs und der Möglichkeit, die negative Ladung nach der Deprotonierung über drei Atome zu delokalisieren, können Protonen am α-C-Atom der Carbonylgruppe leicht abgespalten werden. Eine Reprotonierung des Enolat-Ions am Sauerstoff führt zum Enol. Diese Tautomerisierung kann durch Basen, welche die Abspaltung des Protons unterstützen, oder durch Säuren, welche durch Protonierung des Carbonylsauerstoffs die Polarisierung der C–O-Bindung verstärken, katalysiert werden.

Keto-Enol-Tautomerie
Keto-Enol-Tautomerie1.svgKeto-Enol-Tautomerie2.svg
Keto-Enol-Tautomerie3.svg
Keto-Enol-Tautomerie4.svg
Abspaltung eines Protons: Das α-C-Atom gibt in basischer Lösung ein Proton ab.Dieses Carbanion ist mesomeriestabilisiert: Mesomeriestabilisierung des Enolat-Anions.Bindet sich das Proton an den negativierten Sauerstoff, entsteht das Enol: Anlagerung des Protons an das Enolat-Anion.
CarbonylverbindungEnolform in %
Propanon (Aceton)  0,00025
Butan-2,3-dion (Diacetyl)  0,0056
Cyclohexanon  0,02
Ethyl-3-oxobutyrat (Acetessigester)  8
Pentan-2,4-dion (Acetylaceton) 80
einwertige Phenole100

Das Gleichgewicht liegt in der Regel auf der Seite der Ketoform. So beträgt der Anteil der Enol-Form im Aceton nur 0,00025 %. Beim Pentan-2,4-dion (Trivialname Acetylaceton) dagegen überwiegt im Gleichgewicht die Enolform. Phenole liegen vorwiegend in der Enolform vor, da die Bildung der Ketoform (Beispiel: chinoide Struktur) das aromatische System aufhebt.

Beispiel: Ethanal und Ethenol befinden sich in Lösung in einem tautomeren Gleichgewicht, das Gleichgewicht liegt allerdings deutlich auf der Seite des Ethanals. Es liegt sowohl Bindungsisomerie (C=C / C=O) als auch funktionelle Isomerie (–CH=O / –C–OH) vor.

Ethanal-Ethenol-Tautomerie
Ethanal Ethenol Tautomerie.svg

Aus der Lage des Gleichgewichts lässt sich nicht auf die Reaktivität schließen. Oft ist die Enol-Form erheblich reaktiver als die Keto-Form. Weil diese aber aufgrund des sich schnell einstellenden Gleichgewichtes ständig nachgebildet wird, beobachtet man makroskopisch ausschließlich die Reaktivität des Enols (siehe Prinzip von Le Chatelier).

Sehr schön lässt sich dies bei der Reaktion von Aceton mit Brom zeigen. Nach Zugabe eines Tropfens Brom verschwindet dessen Farbe zunächst langsam, dann immer schneller, da durch das entstandene HBr die Einstellung des Keto-Enol-Gleichgewichts stark beschleunigt wird. Bei weiterer Bromzugabe erfolgt die Entfärbung unter Bildung von Bromaceton fast augenblicklich.

Ketol-Endiol-Tautomerie

α-Hydroxy-Ketone (Acyloine) weisen eine besondere Form der Keto-Enol-Tautomerie auf.

1. Das 2-Hydroxy-propanal weist am α-C-Atom (dem 2. C-Atom) eine Hydroxygruppe auf. Diese polarisiert zusätzlich durch ihren negativen induktiven Effekt die C-H-Bindung am α-C-Atom und erleichtert damit die Abspaltung eines Protons. Es entsteht ein Endiol als ein Molekül mit einer Doppelbindung und zwei (-di-) benachbarten Hydroxygruppen. Durch Umlagerung eines Protons kann dieses wieder in ein Molekül mit einem Carbonylsauerstoff übergehen, in diesem Fall ein Keton.

Hydroxypropanal-Propendiol-Hydroxypropanon-Tautomerie
Ketol-Endiol-Tautomerie

Hier liegt zusätzlich Stellungsisomerie vor, da sich das 2-Hydroxy-propanal und das 1-Hydroxypropanon nur in den Positionen der Hydroxy- und der Carbonyl-Gruppe unterscheiden.

2. Wird im Beispiel des Propanals die Methylgruppe durch eine Kohlenwasserstoffkette mit vier C-Atomen und je vier Hydroxygruppen ersetzt, liegt eine Aldohexose vor, die über die Endiol-Form mit der Ketohexose in wässriger Lösung im Gleichgewicht vorliegt. So befinden sich in wässriger Lösung die epimere Glucose und Mannose als Aldohexosen mit der Ketohexose Fructose im Gleichgewicht (Lobry-de-Bruyn-Alberda-van-Ekenstein-Umlagerung). Die bisher angenommene Erklärung, dass die positive Fehling-Probe bei Fructose auch auf eine Keto-Enol-Tautomerie zurückzuführen ist, wurde mittlerweile widerlegt[4]. Doch stellen Endiole (bzw. deren Anionen, wie sie in der alkalischen Fehling-Lösung entstehen) selbst starke Reduktionsmittel dar, die zu 1,2-Diketonen dehydriert werden. Beispielsweise wirken auch Benzoin und Acetoin (3-Hydroxybutanon-2) stark reduzierend. In der Glycolyse wird die Umwandlung von Glucose-6-phosphat in Fructose-6-phosphat durch das Enzym Glucose-Phosphat-Isomerase, in einem späteren Schritt der Glycolyse die Reaktion des Glycerinaldehyd-3-phosphats zu Dihydroxyacetonphosphat durch das Enzym Triosephosphat-Isomerase katalysiert.

Weitere Beispiele: Ribose und Arabinose als Aldopentosen stehen mit der Ketopentose Ribulose im tautomeren Gleichgewicht.

3. Auch die Epimerisierung ist eine Tautomerisierung: In wässriger Lösung wandeln sich Epimere, das sind Aldosen, die sich nur durch die Stellung der Hydroxygruppe am 2. C-Atom unterschieden, ineinander um. Beispiele für Epimeren-Paare: Glucose / Mannose, Ribose / Arabinose, Erythrose / Threose, D-Glycerinaldehyd / L-Glycerinaldehyd

Siehe auch: Ketol-Endiol-Tautomerie bei Phloroglucin, Reduktone.

Nitro-aci-Nitro-Tautomerie

Verbindungen mit einer Nitro-Gruppe stehen in saurer Lösung mit ihrer aci-Form im Gleichgewicht. Dabei liegt das Gleichgewicht in der Regel auf der Seite der Nitroverbindung.

Nitro-aci-Nitro-Tautomerie
Nitro-aci-Nitro-Tautomerie Nitroethan.svg
Nitroethan: Tautomerie der Nitrogruppe

Nitroso-Oxim-Tautomerie

Verbindungen mit einer Nitroso-Gruppe stehen in saurer Lösung mit ihrer Oxim-Form im Gleichgewicht. Dabei liegt das Gleichgewicht in der Regel zu 100 % auf der Seite des Oxims.

Nitroso-Oxim-Tautomerie
Nitroso-Oxim-Tautomerie.svg

Amid-Imidsäure-Tautomerie

Die Imidsäuren sind Tautomere der Amide.[5]

Amid-Imid-Tautomerie
Tauromerism Amide Imido Acid.svgAmin-Imin-Tautomerie Harnstoff.svgAmin-Imin-Tautomerie Hydroxamsäuren.svg
Tautomerie Amid / ImidsäureTautomerie des HarnstoffsTautomerie der Hydroxamsäure

Imin-Enamin-Tautomerie

Imin-Enamin-Tautomerie
Enamine Imine Tautomerism V.1.svgImin-Enamin-Tautomerie Histidin.svg
Imin-Enamin-TautomerieEin Beispiel für eine cyclische und doppelte
Imin-Enamin-Tautomerie stellt das Histidin dar.

Azo-Hydrazo-Tautomerie

Azoverbindungen mit einem enolisierbaren Wasserstoffatom am α-Kohlenstoffatom neben der Azo-Gruppe stehen im Gleichgewicht mit der Hydrazo-Form. Dabei liegt das Gleichgewicht in der Regel vorwiegend auf der Seite der Hydrazo-Form.

Azo-Hydrazo-Tautomerie
Azo Hydrazo Tautomerism V.2.svg

Tautomerie bei Tetrazolen

Tautomeres Gleichgewicht der heteroaromatischen 1H-Tetrazole und 2H-Tetrazole im Vergleich mit 5H-Tetrazol (rechts):

Tetrazol-Tautomerie
Tetrazole Tautomerism V.png

Lactam-Lactim-Tautomerie

Lactam-Lactim-Tautomerie
Lactam-Lactim-Tautomerie.svgLactam-Lactim-Tautomerie Cyanursäure.svgLactam-Lactim-Tautomerie Hypoxanthin.svg
Tautomerie eines LactamsTautomerie der CyanursäureTautomerie des Hypoxanthins (ein Purin)
Nitro-aci-Nitro-Tautomerie Barbitursäure.svgLactam-Lactim-Tautomerie Pyrazolone.svgGuanin hat in Position 2 zusätzlich eine NH2-Gruppe, Harnsäure in Position 2 und 8 jeweils ein OH-Gruppe
Tautomerie der Barbitursäure (ein Pyrimidin)Tautomerie von Dihydropyrazolonen

Thiolactam-Thiolactim-Tautomerie

Thiolactam-Thiolactim-Tautomerie
Thiolactam-Thiolactim-Tautomerie Purinthiol.svg
Tautomerie des 6-Purinthiols:
6-Thioguanin hat in Position 2 zusätzlich eine NH2-Gruppe

Ring-Ketten-Tautomerien

Oxy-Cyclo-Tautomerie

Bei langkettigen Oxo-Verbindungen könnte sich cyclo-Ether bilden. Beispiel ist die Halbacetal-Cyclo-Tautomerie. Halbacetale entstehen in einer Additionsreaktion von Alkoholen an Carbonylverbindungen. Enthält ein Molekül eine Hydroxygruppe, die weit genug von der Carbonyl-Gruppe entfernt ist, kann es durch eine Reaktion innerhalb des Moleküls zum Ringschluss kommen. Dabei erhält der Carbonylsauerstoff das Proton der Hydroxygruppe und wird dadurch selbst zur Hydroxygruppe. Der Ringschluss erfolgt durch die Bildung einer Bindung zwischen dem negativ polarisierten Sauerstoff der entfernten Hydroxygruppe und dem positiv polarisierten Kohlenstoff der Carbonylgruppe. Zwischen der offenkettigen Aldhehyd- oder Ketoform und der Ringform liegt in wässriger Lösung ein Gleichgewicht vor. Dies ist bei allen Aldo- und Keto-Pentosen und -Hexosen in wässriger Lösung der Fall.

Oxy-Cyclo-Tautomerie
Oxy-Cyclo-Tautomerie.svgOxy-Cyclo-Tautomerie Ribose.svg
Cyclo-Acetal-GleichgewichtTautomerie der Ribose

(vergleiche ATP und RNA; siehe auch Glucose und Fructose)

Tropanol-Cycloheptanon-Tautomerie

Das (1R)-1-Tropanol steht mit (R)-(Methylamino)cycloheptanon in einem tautomeren Gleichgewicht:

Tropanol-Heptanon-Tautomerie
R-Tropanol.svg
Tautomerie des (1R)-1-Tropanols

Anionotropie

Anionotropie
Anionotropie (Beispiel von 3-Hydroxy-1-buten)
Tautomerie der Butenole

Beispiel Butenole: 3-Hydroxy-1-buten steht mit 1-Hydroxy-2-buten (Crotylalkohol) in einem tautomeren Gleichgewicht, wenn es mehrere Stunden mit verdünnter Schwefelsäure auf 100 °C erhitzt wird (Gleichgewichtsverhältnis 3 : 7). Diese Tautomerie entspricht nur formal einer Anionotropie, bei welcher ein Hydroxid-Anion seine Position ändert. Der eigentliche Reaktionsmechanismus besteht darin, dass zunächst die Hydroxygruppe protoniert und anschließend als Wassermolekül abgespalten wird. Zurück bleibt ein mesomeriestabilisiertes Carbeniumion, welches am 1. und 3. C-Atom positiv polarisiert ist. An einem der beiden C-Atome kann sich ein Wassermolekül binden, welches durch Abspaltung eines Protons wieder zur Hydroxygruppe wird.

Dyadische Tautomerie

Bei der dyadischen Tautomerie (von gr. dyas = Zweiheit) findet eine Protonenwanderung zwischen Nachbaratomen statt.

Dyadische Tautomerie
Dyadische Tautomerie schweflige Säure.svgDyadische Tautomerie Blausäure.svg
Schweflige Säure steht im
Gleichgewicht mit Sulfonsäure
Cyanwasserstoff (Blausäure) steht im Gleichgewicht mit Isocyanwasserstoff, wobei das Gleichgewicht auf der Seite des Cyanwasserstoffs (links) liegt.

Einzelnachweise

  1. Eintrag zu tautomerization. In: IUPAC (Hrsg.): Compendium of Chemical Terminology. The “Gold Book”. doi:10.1351/goldbook.T06253 – Version: 2.3.3.
  2. L Antonov: Tautomerism: Methods and Theories. 1. Auflage. Wiley-VCH, Weinheim 2013, ISBN 978-3-527-33294-6.
  3. a b Eintrag zu tautomerism. In: IUPAC (Hrsg.): Compendium of Chemical Terminology. The “Gold Book”. doi:10.1351/goldbook.T06252 – Version: 2.3.3.
  4. Holger Fleischer: Fehlinterpretation der Fehling-Probe auf reduzierende Zucker – Von der Beobachtung im Chemieunterricht zur Evidenz gegen die Oxidation der Aldehydgruppe. In: CHEMKON. Band 24, Nr. 1, 2017, S. 27–30, doi:10.1002/ckon.201610283.
  5. Eintrag zu Imidsäuren. In: Römpp Online. Georg Thieme Verlag, abgerufen am 23. Februar 2019.

Auf dieser Seite verwendete Medien

Amin-Imin-Tautomerie Hydroxamsäuren.svg
Amin-Imin-Tautomerie am Beispiel der Hydroxamsäuren
Oxy-Cyclo-Tautomerie Ribose.svg
Oxy-Cyclo-Tautomerie am Beispiel der Ribose
Oxy-Cyclo-Tautomerie.svg
Oxy-Cyclo-Tautomerie
Thiolactam-Thiolactim-Tautomerie Purinthiol.svg
Thiolactam-Thiolactim-Tautomerie am Beispiel des Purinthiols
Nitro-aci-Nitro-Tautomerie Nitroethan.svg
Nitro-aci-Nitro-Tautomerie am Beispiel von Nitroethan
Lactam-Lactim-Tautomerie.svg
Lactam-Lactim-Tautomerie
Nitro-aci-Nitro-Tautomerie Barbitursäure.svg
Nitro-aci-Nitro-Tautomerie am Beispiel der Barbitursäure
Lactam-Lactim-Tautomerie Pyrazolone.svg
Lactam-Lactim-Tautomerie am Beispiel der Pyrazolone
Keto-Enol-Tautomerie4.svg
Mechanismus der Keto-Enol-Tautomerie 4/4
Dyadische Tautomerie Blausäure.svg
Dyadische Tautomerie am Beispiel der Blausäure
Ketol-Endiol-Tautomerie.svg
Autor/Urheber: Whoopie23, Lizenz: CC BY-SA 3.0
Ketol-Endiol-Tautomerie
Amin-Imin-Tautomerie Harnstoff.svg
Amin-Imin-Tautomerie am Beispiel des Harnstoffs
R-Tropanol.svg
Gleichgewicht zwischen R-Tropanol und R-Methylamino-cycloheptanon
Keto-Enol-Tautomerie2.svg
Mechanismus der Keto-Enol-Tautomerie 2/4
Tautomerie (Anionotropie) m2.svg
Autor/Urheber: Whoopie23, Lizenz: CC BY-SA 3.0
Anionotropie (Beispiel von 3-Hydroxy-1-buten)
Imin-Enamin-Tautomerie Histidin.svg
Imin-Enamin-Tautomerie am Beispiel von Histidin
Keto-Enol-Tautomerie3.svg
Mechanismus der Keto-Enol-Tautomerie 3/4
Ethanal Ethenol Tautomerie.svg
Keto-Enol-Tautomerie von Ethanal und Ethenol
Dyadische Tautomerie schweflige Säure.svg
Dyadische Tautomerie am Beispiel der schwefligen Säure
Lactam-Lactim-Tautomerie Hypoxanthin.svg
Lactam-Lactim-Tautomerie am Beispiel des Hypoxanthins
Tetrazole Tautomerism V.png
Autor/Urheber: , Lizenz: CC BY-SA 3.0
Tautomerie der 1H-Tetrazole und 2-H-Tetrazole Vergleich mit 5-H-Tetrazol
Keto-Enol-Tautomerie1.svg
Mechanismus der Keto-Enol-Tautomerie 1/4
Lactam-Lactim-Tautomerie Cyanursäure.svg
Lactam-Lactim-Tautomerie am Beispiel der Cyanursäure
Tauromerism Amide Imido Acid.svg
Tauromerism between Amides and Imido Acids
Nitroso-Oxim-Tautomerie.svg
Nitroso-Oxim-Tautomerie
Azo Hydrazo Tautomerism V.2.svg
Azo_Hydrazo_Tautomerie