Pazifische Dekaden-Oszillation

La Niña-Anomalie und PDO-Anomalie der Meeresoberflächentemperaturen in der Zeit vom 14 bis 21. April 2008
Verlauf der PDO zwischen 1900 und heute
Mit Hilfe von Baumringchronologien aus Südkalifornien rekonstruierte PDO-Ereignisse seit dem Jahr 1660[1]

Die Pazifische Dekaden-Oszillation (Abkürzung PDO; englisch pacific decadal oscillation) bezeichnet eine abrupte Änderung der Oberflächentemperatur im nördlichen Pazifischen Ozean.

Das Phänomen der pazifischen Dekaden-Oszillation wurde 1996 von Steven Hare von der University of Washington erkannt und benannt.[2] Die durch die PDO bestimmte Anordnung von Warm- und Kaltwassergebieten im nördlichen Pazifik prägt die Hauptströmungsrichtung des Jetstreams und hat damit langfristige und signifikante Auswirkungen auf das Wettergeschehen.[3]

Zustandsänderungen der PDO korrelierten mit größeren Veränderungen im Ökosystem des nordöstlichen Pazifiks: Warm-Phasen hatten eine höhere biologische Produktivität in den Küstenregionen Alaskas, jedoch eine verringerte Produktivität abseits der Westküste der USA zur Folge. Kaltphasen zeigten ein invertiertes Nord-Süd-Muster im Hinblick auf die Produktivität dieser maritimen Ökosysteme.[4]

Wirkung

Folgende Klimaanomalien in Nordamerika gehen mit extremen Phasen der PDO einher:[5]

KlimaanomaliePDO-WarmphasePDO Kaltphase
Oberflächentemperaturen des nordöstlichen und tropischen Pazifik↗ Überdurchschnittlich↘ Unterdurchschnittlich
Lufttemperaturen im Nordwesten Amerikas (Oktober–März)↗ Überdurchschnittlich↘ Unterdurchschnittlich
Lufttemperaturen im Südosten der USA (Oktober–März)↘ Unterdurchschnittlich↗ Überdurchschnittlich
Niederschlagsmenge im Süden der USA / Norden Mexikos (Oktober–März)↗ Überdurchschnittlich↘ Unterdurchschnittlich
Niederschlagsmenge im Nordwesten Nordamerikas und bei den großen Seen (Oktober–März)↘ Unterdurchschnittlich↗ Überdurchschnittlich
Schneemenge im Nordwesten Nordamerikas im Frühling↘ Unterdurchschnittlich↗ Überdurchschnittlich
Überflutungsrisiko an der Nordwest-Pazifikküste im Winter und Frühling↘ Unterdurchschnittlich↗ Überdurchschnittlich

Unabhängige Studien deuten darauf hin, dass es im vergangenen Jahrhundert lediglich zwei vollständige PDO-Zyklen gab: Ein kaltes PDO-Regime, das von 1890 bis 1924 und von 1947 bis 1976 andauerte, wohingegen warme PDO-Regimes die Jahre von 1925 bis 1946 und von 1977 bis Mitte der 1990er bestimmten. PDO-Fluktuationen im 20. Jahrhundert fanden in zwei Zyklen statt: Einer hatte eine Dauer von 15–25 Jahren, der andere eine Dauer von 50–70 Jahren.[6] Die größten dekadenweiten Zustandsänderungen der PDO im Zeitraum von 1706 bis 1977 fanden im Jahre 1750, 1905 und 1947 statt. Die ausgeprägte bi-dekadische Oszillation des PDO-Index war vom späten 18. bis zur Mitte des 19. Jahrhunderts nur in abgeschwächter Form sichtbar.[1]

Die PDO unterscheidet sich wesentlich von der El Niño-Southern Oscillation (ENSO): PDO-Ereignisse hielten im 20. Jahrhundert für eine Dauer von 20 bis 30 Jahren an, wohingegen ENSO-Ereignisse nur 6 bis 18 Monate andauerten. Zum Anderen machen sich PDO-Ereignisse in der Nordpazifik-Region Amerikas bemerkbar, mit geringeren Effekten in tropischen Regionen. Beim ENSO verhält es sich jedoch genau umgekehrt.[6]

El Niño-Ereignisse können durch eine Kaltphase der PDO abgeschwächt, La-Niña-Ereignisse dagegen verstärkt werden. Im Jahr 2008 wurde ein Wechsel der PDO hin zu einem kalten Regime festgestellt, was die Auswirkungen des bestehenden La Niña verstärkte.[7]

Es ist nicht bekannt, welche Mechanismen hinter der PDO stecken. Daher besteht nur eine geringe Vorhersagbarkeit dieses Klimafaktors. Einige Klimamodelle zeigen PDO-ähnliche Oszillationen, jedoch aus meist unterschiedlichen Gründen. Die Güte dekadengenauer Klimaprojektionen wird vom Verständnis des hinter der PDO stehenden Mechanismus bestimmt. Aber auch ohne eine genaue Theorie verbessern Detailkenntnisse über die PDO jahresbezogene Klimavorhersagen für die Region Nordamerika, denn ein Zustand hat meist über viele Jahre Bestand.[6] Alexander et al. (2008) konnten mit Hilfe eines statistischen Modells den Zustand der PDO über einen Zeitraum von bis zu 4 Jahren mit guten Ergebnissen vorhersagen;[8] die von der NOAA herausgegebenen PDO-Vorhersagen werden mit Hilfe dieses Modells erstellt.[9]

Die Eigenschaft der PDO, über Jahrzehnte in einem Zustand zu verbleiben, zeigt, dass sich „normale“ Klimabedingungen über einen Zeitraum unterscheiden können, die in etwa der Dauer eines Menschenlebens entspricht.[6]

Siehe auch

Weblinks

Einzelnachweise

  1. a b Franco Biondi, Alexander Gershunov, Daniel R. Cayan: North Pacific Decadal Climate Variability since 1661. In: Journal of Climate. Volume 14, Nr. 1, 2001, S. 5–10, doi:10.1175/1520-0442(2001)014<0005:npdcvs>2.0.co;2 (ametsoc.org [PDF; 183 kB; abgerufen am 24. Mai 2013]).
  2. Nathan J. Mantua et al.: A Pacific interdecadal climate oscillation with impacts on salmon production. In: Bulletin of the American Meteorological Society. Volume 78, Nr. 6, 1997, S. 1069–1079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 (washington.edu [PDF; 974 kB; abgerufen am 24. Mai 2013]).
  3. Mike Bettwy: Moody Pacific Unleashes Another Climate Mystery. (Nicht mehr online verfügbar.) NASAGoddard Space Flight Center, 15. April 2004, archiviert vom Original am 15. März 2013; abgerufen am 24. Mai 2013 (englisch).
  4. Nathan J. Mantua, Steven R. Hare: The Pacific Decadal Oscillation. In: Journal of Oceanography. Volume 58, Nr. 1, 2002, S. 35–44, doi:10.1023/A:1015820616384 (washington.edu [PDF; 440 kB; abgerufen am 24. Mai 2013]).
  5. Nathan J. Mantua: The Pacific Decadal Oscillation and Climate Forecasting for North America. (Nicht mehr online verfügbar.) Joint Institute for the Study of the Atmosphere and Oceans, 1999, archiviert vom Original am 10. März 2013; abgerufen am 24. Mai 2013 (englisch).
  6. a b c d Joint Institute for the Study of the Atmosphere and Ocean: The Pacific Decadal Oscillation (PDO). (Nicht mehr online verfügbar.) University of Washington, 2000, archiviert vom Original am 8. Februar 2006; abgerufen am 24. Mai 2013 (englisch).
  7. Alan Buis: Larger Pacific Climate Event Helps Current La Nina Linger. (Nicht mehr online verfügbar.) NASA/CaltechJet Propulsion Laboratory, 21. April 2008, archiviert vom Original am 17. Oktober 2012; abgerufen am 24. Mai 2013 (englisch).
  8. Michael A. Alexander et al.: Forecasting Pacific SSTs: Linear Inverse Model Predictions of the PDO. In: Journal of Climate. Volume 21, Nr. 2, 2008, S. 385–402, doi:10.1175/2007JCLI1849.1 (noaa.gov [PDF; 2,3 MB; abgerufen am 24. Mai 2013]).
  9. Climate Diagnostics Center and Physical Science Division: Linear Inverse Modeling Tropical SST Anomalies Forecast. (Nicht mehr online verfügbar.) CIRES/ESRL/NOAA, archiviert vom Original am 19. Februar 2013; abgerufen am 24. Mai 2013 (englisch).

Auf dieser Seite verwendete Medien

La Nina and Pacific Decadal Anomalies - April 2008.png
A cool-water anomaly known as La Niña occupied the tropical Pacific Ocean throughout 2007 and early 2008. In April 2008, scientists at NASA’s Jet Propulsion Laboratory announced that while the La Niña was weakening, the Pacific Decadal Oscillation—a larger-scale, slower-cycling ocean pattern—had shifted to its cool phase.

This image shows the sea surface temperature anomaly in the Pacific Ocean from April 14–21, 2008. The anomaly compares the recent temperatures measured by the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) on NASA’s Aqua satellite with an average of data collected by the NOAA Pathfinder satellites from 1985–1997. Places where the Pacific was cooler than normal are blue, places where temperatures were average are white, and places where the ocean was warmer than normal are red.

The cool water anomaly in the center of the image shows the lingering effect of the year-old La Niña. However, the much broader area of cooler-than-average water off the coast of North America from Alaska (top center) to the equator is a classic feature of the cool phase of the Pacific Decadal Oscillation (PDO). The cool waters wrap in a horseshoe shape around a core of warmer-than-average water. (In the warm phase, the pattern is reversed).

Unlike El Niño and La Niña, which may occur every 3 to 7 years and last from 6 to 18 months, the PDO can remain in the same phase for 20 to 30 years. The shift in the PDO can have significant implications for global climate, affecting Pacific and Atlantic hurricane activity, droughts and flooding around the Pacific basin, the productivity of marine ecosystems, and global land temperature patterns. “This multi-year Pacific Decadal Oscillation ‘cool’ trend can intensify La Niña or diminish El Niño impacts around the Pacific basin,” said Bill Patzert, an oceanographer and climatologist at NASA's Jet Propulsion Laboratory, Pasadena, Calif. “The persistence of this large-scale pattern [in 2008] tells us there is much more than an isolated La Niña occurring in the Pacific Ocean.”

Natural, large-scale climate patterns like the PDO and El Niño-La Niña are superimposed on global warming caused by increasing concentrations of greenhouse gases and landscape changes like deforestation. According to Josh Willis, JPL oceanographer and climate scientist, “These natural climate phenomena can sometimes hide global warming caused by human activities. Or they can have the opposite effect of accentuating it.” - Caption by Rebecca Lindsey
PDO.svg
Autor/Urheber: Rainald62, Lizenz: CC BY-SA 3.0
Dots, monthly values for the Pacific decadal oscillation index, 1900 – sep2019

line, smoothed index using a 121-months cosine half-wave as windowing function.

Data source:http://jisao.washington.edu/pdo/PDO.latest
Reconstructed PDO since 1660.jpg
Reconstructed PDO since 1660. Correlation between instrumental (dashed) and reconstructed PDO is 0.64 from 1925 to 1991. During warm periods, the eastern North Pacific is warmer than usual, and the central North Pacific is cooler (vice versa during cool periods). Warm and cool PDO phases are qualitatively similar to warm and cool ENSO events, but different because of slower temporal dynamics and stronger midlatitudinal responses.