Orthodrome

Orthodrome auf der Erdkugel zwischen Los Angeles und London
Der kürzeste Weg auf der Kugeloberfläche zwischen Punkt A und B ist eine Orthodrome.

Die Orthodrome (griech. orthos für „gerade“, dromos für „Lauf“) ist die kürzeste Verbindung zweier Punkte auf einer Kugeloberfläche.

Die Orthodrome ist eine Geodäte für den speziellen Fall einer Kugeloberfläche. Die Orthodrome ist immer ein Teilstück eines Großkreises. In der Luftfahrt fliegt man meist entlang dieser Orthodrome, um die geringste Flugstrecke zurücklegen zu können. Die umgangssprachlich häufiger gebrauchte synonyme Bezeichnung ist Luftlinie.

Berechnung

Grundlage für die folgenden Berechnungen sind die Formeln aus der sphärischen Trigonometrie.

Verwendete VariablenBedeutung
Geographische Breite
Geographische Länge
Anfangspunkt
Endpunkt
Nördlichster Punkt der Orthodrome
Kurswinkel bei A
Kurswinkel bei B
Zentriwinkel (Strecke AB, ausgedrückt als Winkel)

Dabei ist in Richtung Westen negativ, Richtung Osten positiv; ist positiv für Breiten der Nordhemisphäre und negativ auf der Südhalbkugel.

Strecke

Als Winkel lässt sich die Strecke folgendermaßen angeben:

Um die Distanz zwischen den zwei Punkten zu berechnen, muss noch mit dem Erdradius (rund 6.370 km) multipliziert werden (für im Bogenmaß; falls in Grad angegeben ist, muss noch zusätzlich mit ° multipliziert werden).

Der Winkel kann über das Skalarprodukt der Ortsvektoren von und berechnet werden. Die obige Formel ergibt sich dann durch Umformungen mit Hilfe geometrischer Additionstheoreme für Sinus und Kosinus. Alternativ kann die Formel hergeleitet werden, indem der Seiten-Kosinussatz der sphärischen Trigonometrie auf das aus den Punkten und und dem Nordpol gebildete Dreieck angewendet wird.

Kurswinkel und rechtweisende Kurse

Kurswinkel

Die beiden Parameter und lassen sich auch direkt aus den Breiten- und Längengraden bzw. und bzw. bestimmen:

rechtweisende Kurse A → B
rechtweisende Kurse B → A

Nördlichster Punkt

In einer gnomonischen Projektion werden Orthodromen stets als gerade Strecke abgebildet

Berechnung des nördlichsten Punkts einer Orthodrome für einen Anfangspunkt A und einen Anfangs-Kurswinkel α:

Beispiel Berechnung der Entfernung Berlin–Tokio

Geographische Koordinaten der Anfangs- und Endpunkte:

  • Berlin
    • 52° 31′ 0″ N = 52,517°
    • 13° 24′ 0″ E = 13,40°
  • Tokio
    • 35° 42′ 0″ N = 35,70°
    • 139° 46′ 0″ E = 139,767°

Winkelberechnung

bzw. im Bogenmaß

Streckenberechnung

Zur Vereinfachung wird von einer Erdkugel mit dem Umfang 40.000 km bzw. dem Radius 6.370 km ausgegangen.

Oder für im Bogenmaß:

Das sind aufgrund der idealisierten Geodaten selbstverständlich nur zwei Näherungen. Sie unterscheiden sich nur deshalb um 6 km, weil aus dem gerundeten Erdradius 6.370 km ein Umfang der Erdkugel von knapp 40.024 km statt 40.000 km folgt. Die tatsächliche Entfernung zwischen den beiden angegebenen Punkten in Berlin und Tokio kann bei Verwendung des WGS84-Referenzellipsoids zu 8941,2 km genauer berechnet werden, also mit einer Abweichung von etwa 23 km oder 0,26 % im Vergleich zur zweiten Näherung.

Genauere Formel zur Abstandsberechnung auf der Erde

Mit folgenden Formeln kann der Abstand zwischen zwei Standorten auf der Erde auf 50 Meter genau berechnet werden, siehe dazu auch Thaddeus Vincenty. Dabei wird keine Kugel, sondern das WGS84-Ellipsoid zugrunde gelegt. Sollten Koordinaten eines anderen Referenzellipsoids verwendet werden, müssen die Parameter (Radius) und (Abplattung) angepasst werden.

Seien und die geografische Breite und Länge von Standort A, und die geografische Breite und Länge von Standort B im Gradmaß. Der Abstand zwischen beiden Standorten berechnet sich wie folgt:

Abplattung der Erde:

Äquatorradius der Erde:

, ,

Zunächst wird der grobe Abstand D ermittelt:

Dabei ist im Bogenmaß einzusetzen.

Der Abstand wird durch die Faktoren und korrigiert:

Der Abstand in Kilometern berechnet sich abschließend wie folgt:

Berechnungsbeispiel Berlin – Tokio

Der Abstand ist also auf etwa 50 m genau zu 8.941,2 km bestimmt worden.

Loxodrome

Gegenüberstellung von Loxodrome (rot) und Orthodrome (blau)
WegLox.Orth.Diff.
NY-MO8359 km7511 km10,1 %
NY-DA6207 km6150 km00,9 %
DA-MO6596 km6509 km01,3 %
Loxodromeverlängerung relativ zur Orthodrome entlang des 50. Breitengrades in Prozent.

Bei der Navigation von Punkt A nach B mit einem Kompass eignet sich die Loxodrome besser, da sie die Meridiane immer im gleichen Winkel kreuzt, man also den einmal eingestellten (Kompass-)Kurs einfach beibehalten kann.

Bei kurzen Strecken ist eine Loxodrome nur unwesentlich länger als eine Orthodrome. Bei hoher Breite und bei Entfernungen unterhalb von 30 Längengraden liegt der relative Längenunterschied bei weniger als 1 %. Danach steigt er deutlich an. Eine Reise entlang des 50. Breitengrades über 180 Längengrade ist 45 % länger als der Weg über einen Großkreis, der dann über den Pol verläuft.

Siehe auch

Weblinks

Quellen

Formel zur genaueren Abstandsberechnung:

  • J. Meeus: Astronomical Algorithms. 2. Auflage. Willmann-Bell, Richmond 2000, ISBN 0-943396-61-1, S. 85.
  • Loxodrome

Auf dieser Seite verwendete Medien

Orthodromic air route.tif
The shortest way on the surface of the globe is always an orthodrome, an arc segment of a great circle of the sphere. This is why a London–Los Angeles air route flies over Greenland.
Orthodrome globe.svg
Autor/Urheber: McSush, Lizenz: CC BY-SA 3.0
orthodrome globe "front" view
Orthodrome gnomonic.svg
Autor/Urheber: McSush, Lizenz: CC BY-SA 3.0
Zeichnerische Darstellung der Zentralprojektion
Ortho-loxorp.svg
Autor/Urheber: Tubas, Lizenz: CC BY-SA 3.0
Relative error in percentage between Orthodrome (great circle) and latitude-Loxodrome for latitude of 50°. Example: Walking along the latitude from 0° to 100° longitude is 9% longer than taking great circle.
Rhumbs and great circles on Mercator.svg
Autor/Urheber: Peter Mercator, Lizenz: CC BY-SA 3.0
Rhumb lines (straight and red) and great circles (curved and blue) on a portion of the Mercator projection. The distances have been calculated for a spherical Earth model of radius 6371km. (The radius approved by the FAI for spherical approximations.) Note the shorter great circle distances.