Mersenne-Zahl

Poststempel mit der 23. Mersenne-Primzahl, die 1963 an der UIUC von Donald B. Gillies gefunden wurde

Eine Mersenne-Zahl ist eine Zahl der Form . Im Speziellen bezeichnet man mit die -te Mersenne-Zahl. Die ersten sieben Mersenne-Zahlen sind

(Folge A000225 in OEIS).

Die Primzahlen unter den Mersenne-Zahlen werden Mersenne-Primzahlen genannt. Die ersten acht Mersenne-Primzahlen sind

(Folge A000668 in OEIS)
für die Exponenten (Folge A000043 in OEIS).

Bei der Darstellung im Dualsystem zeigen sich Mersennezahlen als Einserkolonnen, d. h. Zahlen, die ausschließlich aus Einsen bestehen. Die -te Mersennezahl ist im Dualsystem eine Zahl mit Einsen (Beispiel: ). Mersenne-Zahlen zählen im Binären zu den Zahlenpalindromen, Mersenne-Primzahlen dementsprechend zu den Primzahlpalindromen.

Mersenne-Vermutungstabelle: p ≤ 263
P: Mp ist Mersenne-Zahl
—: Mp ist die Composite-Mersenne-Zahl
Cyan zeigt richtig
Rosa zeigt falsch
p235711131719
MpPPPPPPP
p2329313741434753
MpP
p5961677173798389
MpPP
p97101103107109113127131
MpPP
p137139149151157163167173
Mp
p179181191193197199211223
Mp
p227229233239241251257263
Mp

Ihren Namen haben diese Primzahlen von dem französischen Mönch und Priester Marin Mersenne (1588–1648), der im Vorwort seiner Cogitata Physico-Mathematica[1] behauptete, dass für und die Zahl eine Primzahl sei.

Er irrte sich jedoch bei den Zahlen und und übersah die Mersenne-Primzahlen , und . Dass keine Primzahl ist, hat Édouard Lucas 1876 gezeigt, aber erst im Jahre 1903 konnte der Mathematiker Frank Nelson Cole die Primfaktoren dieser Zahl benennen. Um den Nachweis zu führen, dass keine Primzahl ist, wurde 1932 eine frühe Rechenmaschine verwendet. Bei der Zahl handelt es sich möglicherweise um einen Lesefehler seitens Mersenne aus seiner Korrespondenz mit Bernard Frénicle de Bessy und Pierre de Fermat, wobei er mit verwechselte.

Mersenne-Zahlen kommen auch beim Mersenne-Twister vor, einem Pseudozufallszahlengenerator.

Geschichte

Mersenne-Zahlen wurden zuerst in der Antike im Zusammenhang mit vollkommenen Zahlen untersucht. Eine natürliche Zahl wird vollkommen genannt, wenn sie gleich der Summe ihrer echten Teiler ist (Beispiel: ). Schon Euklid hatte gezeigt, dass die Zahl vollkommen ist, wenn eine Primzahl ist ( liefert die Zahl ). 2000 Jahre später wurde von Euler die Umkehrung für gerade vollkommene Zahlen gezeigt: jede gerade vollkommene Zahl ist von der Form , wobei eine Primzahl ist.[2]

Ungerade vollkommene Zahlen sind bisher nicht gefunden worden, allerdings konnte ihre Existenz bis heute weder bewiesen noch widerlegt werden.

Die ersten vier vollkommenen Zahlen und waren schon in der Antike bekannt. Die Suche nach weiteren vollkommenen Zahlen motivierte die Suche nach weiteren Mersenne-Primzahlen. Denn die vollkommenen Zahlen sind exakt die Dreieckszahlen aus den Mersenne-Primzahlen. Die wichtigste dabei zu beachtende Eigenschaft ist die folgende:

Ist eine zusammengesetzte Zahl, so ist auch eine zusammengesetzte Zahl. Dass von und von ohne Rest geteilt wird, kann mit Hilfe einer Polynomdivision gezeigt werden, falls und natürliche Zahlen ohne die Null sind.

Daraus folgt unmittelbar, dass der Exponent einer Mersenne-Primzahl selbst eine Primzahl ist. Durch diese Eigenschaft wird die Suche nach Mersenne-Primzahlen erleichtert, da nur noch Mersenne-Zahlen mit Primzahlexponent betrachtet werden müssen.

Der Umkehrschluss, dass prim ist, wenn prim ist, ist jedoch falsch, da beispielsweise keine Primzahl ist.

Mersenne-Primzahlen sind selten: bislang (Stand April 2023) sind erst 51 davon gefunden worden. Da es einen besonders effizienten Primzahltest für sie gibt, sind die größten bekannten Primzahlen Mersenne-Primzahlen.

JahrEreignis
bis 1536Man glaubt, dass für alle Primzahlen p gilt, 2p–1 sei prim.
1536Der deutsche Rechenmeister Ulrich Rieger (lat. Hudalrichus Regius) veröffentlicht in seinem Rechenbuch Utriusque Arithmetices epitome[3] als erster die fünfte vollkommene Zahl 212·(213–1) = 4096 · 8191 = 33550336 in gedruckter Form. Nachdem die Zahlen 511 und 2047 in seiner tabellarischen Übersicht nicht vorkommen, darf man annehmen, dass er 211–1 = 2047 = 23 · 89 als zusammengesetzt erkannt hat, obgleich er dies nicht extra erwähnt.
1555Johann Scheubel veröffentlicht in seiner deutschen Übersetzung der Bücher VII-IX von Euklids Elementen die nächsten beiden vollkommenen Zahlen 216·(217–1) = 65536 · 131071 = 8589869056 und 218·(219–1) = 262144 · 524287 = 137438691328.[4] Die zweiten Faktoren sind die Mersenneschen Primzahlen M17 und M19. Allerdings hat er sowohl 211–1 = 2047 = 23 · 89, als auch 215–1 = 32767 = 7 · 31 · 151 nicht als zusammengesetzt erkannt, dafür aber 221–1 = 2097151 = 72 · 127 · 337. (Die Zerlegungen gibt er allerdings an dieser Stelle nicht an.) Er erhält in seinem Werk also fälschlicherweise neun, anstatt der korrekten sieben vollkommenen Zahlen.
1603Pietro Cataldi (1548–1626) zeigt, dass 2p–1 prim ist für p = 17, 19 und vermutet dies korrekt für p = 31. Fälschlicherweise glaubt er es auch für p = 23, 29 und 37.
1640Fermat widerlegt Cataldi für p = 23 und p = 37: 223–1 = 47 · 178481 und 237–1 = 223 · 616318177 sind keine Primzahlen.
1644Mersenne behauptet, 2p–1 sei prim für p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 und 257, jedoch nicht prim für alle anderen natürlichen Zahlen kleiner als 257 (Vorwort zu seinem Werk Cogitata Physico-Mathematica). Wir wissen heute, dass diese Behauptung jedoch falsch ist, denn 2p–1 ist prim sowohl für p = 61 (Perwuschin, 1883) als auch für p = 89 (Powers, 1911) und p = 107 (Powers und Fauquembergue, 1914), zudem sind 267–1 (Lucas, 1876; Cole 1903) und 2257–1 (Lehmer, 1932) zusammengesetzt.
1738Euler widerlegt Cataldi für p = 29: 229-1 = 233 · 1103 · 2089.
1750Euler bestätigt, dass Cataldi für p = 31 richtig lag: 231–1 ist prim.
1870Édouard Lucas (1842–1891) formuliert die theoretischen Grundlagen für den Lucas-Lehmer-Test.
1876Lucas bestätigt Mersenne: 2127–1 ist prim und widerspricht: 267-1 ist nicht prim, Faktoren bleiben unbekannt.
1883Iwan Michejowitsch Pervuschin (1827–1900), ein russischer Mathematiker und orthodoxer Priester aus Perm/Russland, zeigt, dass 261–1 prim ist (Widerspruch zu Mersenne).
1903Frank Nelson Cole benennt die Primfaktoren von 267-1 = 193707721 · 761838257287.
1911Ralph Ernest Powers widerspricht Mersenne für p = 89: 2p–1 ist prim.[5]
1914Powers widerspricht Mersenne auch für p = 107: 2p–1 ist prim. Fast gleichzeitig kommt auch E. Fauquembergue zu dieser Aussage.[6]
1930Derrick Henry Lehmer (1905–1991) formuliert den Lucas-Lehmer Test.
1932Lehmer zeigt: M(149) und M(257) sind nicht prim,[7] er rechnet dazu ein Jahr lang täglich zwei Stunden an einem Tischrechner.[8]
1934Powers zeigt: M(241) ist nicht prim.[9]
1944Horace S. Uhler zeigt: M(157) und M(167) sind nicht prim.[10]
1945Uhler zeigt: M(229) ist nicht prim.[11]
1947Uhler zeigt: M(199) ist nicht prim.[12]
1947Der Bereich von 1 bis 257 ist nun vollständig überprüft. Man kennt jetzt die Mersenne-Primzahlen M(p) für p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 und 127.[13]
1951Beginn des Einsatzes von Computern. Die Länge der größten bekannten Primzahl steigt bis 1952 von 39 Stellen auf 687 Dezimalstellen.
1963Donald Gillies entdeckt M(11.213) mit 3.376 Stellen.[14]
1996Joel Armengaud und George Woltman entdecken mit GIMPS M(1.398.269) mit 420.921 Stellen.
1999Mit M(6.972.593), die 2.098.960 Stellen hat, kennt man am 1. Juni erstmals eine Primzahl mit mehr als 1 Million Stellen.
2004Am 15. Mai wird nachgewiesen, dass M(24.036.583), eine Zahl mit 7.235.733 Stellen, prim ist.
2005Am 18. Februar wird vom GIMPS-Projekt die 42. Mersenne-Primzahl entdeckt: M(25.964.951) hat 7.816.230 Stellen.
Ebenfalls vom GIMPS-Projekt wird am 15. Dezember die 43. Mersenne-Primzahl entdeckt: M(30.402.457) hat 9.152.052 Stellen.
2006Am 4. September vermeldet das GIMPS-Projekt die Entdeckung der 44. Mersenne-Primzahl M(32.582.657) mit 9.808.358 Stellen.
2008Am 16. September werden vom GIMPS-Projekt die 45. und die 46. bekannte Mersenne-Primzahl veröffentlicht: M(37.156.667) (entdeckt am 6. September) mit 11.185.272 Stellen und M(43.112.609) (entdeckt am 23. August) mit 12.978.189 Stellen.
2009Die 47. bekannte Mersenne-Primzahl M(42.643.801) wird vom GIMPS-Projekt am 12. April entdeckt und am 12. Juni veröffentlicht.
2013Die 48. bekannte Mersenne-Primzahl M(57.885.161) wird vom GIMPS-Projekt am 25. Januar entdeckt.
2016Die 49. bekannte Mersenne-Primzahl M(74.207.281) wird vom GIMPS-Projekt am 7. Januar entdeckt.[15]
2017Die 50. bekannte Mersenne-Primzahl M(77.232.917) wird vom GIMPS-Projekt am 26. Dezember entdeckt.[16]
2018Die 51. bekannte Mersenne-Primzahl M(82.589.933) wird vom GIMPS-Projekt am 7. Dezember entdeckt.[17]

Teilbarkeitseigenschaften der Mersenne-Zahlen

Im Lauf ihrer langen Geschichte sind viele Ergebnisse über Mersenne-Zahlen gefunden worden. Außer der schon erwähnten grundlegenden Teilbarkeitseigenschaft (teilt die Zahl , so ist Teiler von ) gibt es z. B. folgende Ergebnisse:

  • Ist eine gerade Zahl und prim, so ist ein Teiler von , z. B. .
  • Ist eine ungerade Primzahl und ein Primfaktor von Mn, so gilt und . Beispiel: und .
  • Wenn eine Primzahl mit ist, dann gilt die folgende Äquivalenz: teilt die Mersenne-Zahl genau dann, wenn prim ist. Beispiel: ist prim und lässt einen Rest von bei Division durch . Da (als Ergebnis von ) prim ist, folgt: teilt die Mersenne-Zahl . Diese Aussage wurde von Leonhard Euler formuliert, aber erst später von Joseph-Louis Lagrange bewiesen (siehe auch Sophie-Germain-Primzahl).
  • Ist eine Primzahl, dann ist keine Primzahl (nämlich durch teilbar). Mersenne-Primzahlen eignen sich also nicht als die kleinere Primzahl eines Primzahlzwillings.
  • Ist mit , so ist das Produkt der Fermat-Zahlen bis . Beispiel: .

Die Suche nach Mersenne-Primzahlen

Für die Erzielung von Primzahl-Rekorden eignen sich Mersenne-Primzahlen in mehrfacher Hinsicht besonders gut, weil (a) zusammengesetzte Exponenten unberücksichtigt bleiben können, weil diese keine Primzahlen generieren, und deshalb eine Liste der Kandidaten für den Exponent leicht mit Primzahlgeneratoren erstellt werden kann[18] (b) durch den funktionalen Zusammenhang die Größenordnung der Primzahl exponentiell – nämlich zur Basis zwei – mit dem Argument anwächst, man also schnell sehr große Zahlen erhält, (c) mit dem nachfolgend beschriebenen Lucas-Lehmer-Test ein einfacher und effektiver Primzahltest zur Verfügung steht.

Seit 1992 ist die größte bekannte Primzahl daher immer eine Mersenne-Primzahl gewesen.

Der Lucas-Lehmer-Test

Dieser Test ist ein speziell auf Mersenne-Zahlen zugeschnittener Primzahltest, der auf Arbeiten von Édouard Lucas aus der Zeit 1870–1876 beruht und im Jahr 1930 von Derrick Henry Lehmer ergänzt wurde.

Er funktioniert wie folgt:

Sei ungerade und prim. Die Folge sei rekursiv definiert durch und .
Dann gilt: ist genau dann eine Primzahl, wenn durch teilbar ist.

GIMPS: Die große Internet-Mersenne-Primzahl-Suche

Im Dezember 2018 waren 51 Mersenne-Primzahlen bekannt. Mit massivem Computereinsatz wird nach weiteren Mersenne-Primzahlen gesucht. Da es sich um sehr große Zahlen handelt, sind die Berechnungen aufwendig: Die 51. Mersenne-Primzahl hat mehr als 24 Millionen Ziffern[19] im Dezimalsystem. Die Berechnung erfolgt durch Langzahlarithmetik.

GIMPS (engl.: Great Internet Mersenne Prime Search) versucht, weltweit möglichst viele Computer an den Berechnungen zu beteiligen. Die dafür nötige Software (Prime95) wurde von George Woltman und Scott Kurowski erstellt und ist für mehrere Computer-Plattformen (Windows, Linux …) verfügbar.

Liste aller bekannten Mersenne-Primzahlen

Graph der Anzahl von Ziffern bei den größten bekannten Mersenne-Primzahlen im Verhältnis zum Jahr, ab 1950, der jüngsten Ära elektronischer Rechenmaschinen. Beachte: Die vertikale Skala ist eine zweifach logarithmische Skala des Wertes der Mersenne-Primzahl.
Nr.pAnzahl
der Ziffern
von M(p)
Jahr[20]Entdecker[20]
121
231
352
473
51341456
61761555Pietro Cataldi
71961555Pietro Cataldi
831101772Leonhard Euler
961191883Iwan Perwuschin
1089271911Ralph E. Powers
11107331914Powers
12127391876Édouard Lucas
135211571952Raphael M. Robinson
146071831952Robinson
1512793861952Robinson
1622036641952Robinson
1722816871952Robinson
1832179691957Hans Riesel
19425312811961Alexander Hurwitz
20442313321961Hurwitz
21968929171963Donald B. Gillies
22994129931963Gillies
2311.21333761963Gillies
2419.93760021971Bryant Tuckerman
2521.70165331978Landon Curt Noll, Laura Nickel
2623.20969871979Noll
2744.49713.3951979David Slowinski, Harry L. Nelson
2886.24325.9621982Slowinski
29110.50333.2651988Walter Colquitt, Luther Welsh Jr.
30132.04939.7511983Slowinski
31216.09165.0501985Slowinski
32756.839227.8321992Slowinski, Paul Gage
33859.433258.7161994Slowinski, Paul Gage
341.257.787378.6321996Slowinski, Paul Gage
351.398.269420.9211996GIMPS / Joel Armengaud
362.976.221895.9321997GIMPS / Gordon Spence
373.021.377909.5261998GIMPS / Roland Clarkson
386.972.5932.098.9601999GIMPS / Nayan Hajratwala
3913.466.9174.053.9462001GIMPS / Michael Cameron
4020.996.0116.320.4302003GIMPS / Michael Shafer
4124.036.5837.235.7332004GIMPS / Josh Findley
4225.964.9517.816.2302005GIMPS / Martin Nowak
4330.402.4579.152.0522005GIMPS / Curtis Cooper, Steven Boone
4432.582.6579.808.3582006GIMPS / Curtis Cooper, Steven Boone
4537.156.66711.185.2722008GIMPS / Hans-Michael Elvenich
4642.643.80112.837.0642009GIMPS / Odd M. Strindmo
4743.112.60912.978.1892008GIMPS / Edson Smith
4857.885.16117.425.1702013GIMPS / Curtis Cooper
49?74.207.28122.338.6182016GIMPS / Curtis Cooper[15]
50?77.232.91723.249.4252017GIMPS / Jonathan Pace[16]
51?82.589.93324.862.0482018GIMPS / Patrick Laroche[17]

Mit Stand 17. Juli 2023 ist nicht ausgeschlossen, dass es zwischen p = 57.885.161 und p = 82.589.933 noch weitere, bisher unentdeckte Mersenne-Primzahlen gibt; deshalb ist die Nummerierung ab Nr. 49 noch ungewiss (und mit einem „?“ versehen).

Offene Fragen

Wie so oft in der Zahlentheorie gibt es auch zu Mersenne-Zahlen ungelöste Probleme, die sehr einfach zu formulieren sind:

  • Gibt es unendlich viele Mersenne-Primzahlen? Man vermutet aufgrund von plausiblen Heuristiken, dass es etwa viele Mersenne-Primzahlen gibt mit (für eine positive Konstante ). Sollte das zutreffen, so gäbe es tatsächlich unendlich viele Mersenne-Primzahlen.
  • Genauer, ist die Vermutung, die H. W. Lenstra und C. Pomerance unabhängig voneinander aufstellten, richtig, dass es asymptotisch viele Mersenne-Primzahlen gibt, die kleiner oder gleich sind?[21]
  • Umgekehrt: gibt es unendlich viele Mersenne-Zahlen mit prim, die keine Primzahlen sind? Auch hier vermutet man als Antwort ja. Dies würde zum Beispiel aus der Vermutung, dass es unendlich viele Sophie-Germain-Primzahlen gibt, die kongruent 3 modulo 4 sind, folgen.
  • Sind alle Mersenne-Zahlen mit prim quadratfrei, d. h. kommt in der Primfaktorzerlegung der Zahl jeder Primfaktor genau einmal vor? Man konnte bisher noch nicht einmal beweisen, dass dies für unendlich viele Mersenne-Zahlen gilt.
  • Gilt die „neue Mersenne-Vermutung“? Die Folge von Mersenne-Primzahlen, die Mersenne angab, lässt vermuten, dass er meinte, dass eine Mersenne-Zahl mit prim genau dann prim ist, wenn oder . Da diese Aussage nicht gilt, stellten P. Bateman, J. Selfridge und S. Wagstaff die neue Mersenne-Vermutung auf.
    Diese besagt, dass aus zwei der folgenden drei Aussagen bereits die dritte folgt:
    1. oder ,
    2. ist eine (Mersenne) Primzahl,
    3. ist eine Primzahl (man nennt sie Wagstaff-Primzahl).
  • Sind alle Glieder der Folge Primzahlen? Die stärkere Vermutung, dass alle Zahlen Primzahlen sind, für die eine Primzahl ist, konnte 1957 durch Raphael Robinson widerlegt werden. (z. B. ist nicht prim) Diese letzteren Zahlen nennt man doppelte Mersenne-Zahlen (OEIS, A077585). Bisher sind doppelte Mersenne-Primzahlen nur für bekannt (OEIS, A077586); für und wurden kleine Faktoren gefunden.[22] Ob es weitere oder sogar unendlich viele doppelte Mersenne-Primzahlen gibt, bleibt unbekannt.

Mersenne–Fermat-Primzahlen

Eine Mersenne–Fermat-Zahl hat die Form , wobei eine Primzahl und eine natürliche Zahl ist. Ist die Mersenne–Fermat-Zahl eine Primzahl, so nennt man sie Mersenne–Fermat-Primzahl.

Beispiele

  • Sei .
    Dann erhält man Mersenne–Fermat-Zahlen der Form . Diese Zahlen sind die Mersenne-Zahlen .
  • Sei .
    Dann erhält man Mersenne–Fermat-Zahlen der Form . Diese Zahlen sind die Fermat-Zahlen .
  • Die einzigen momentan bekannten Mersenne–Fermat-Primzahlen mit sind die folgenden acht:[23]
    Die momentan größte bekannte Mersenne–Fermat-Primzahl hat 1031 Stellen.

Eigenschaften von Mersenne–Fermat-Primzahlen

  • Es gelten folgende Eigenschaften:[23]
    • , wobei das -te Kreisteilungspolynom ist.
    • Je zwei verschiedene Mersenne–Fermat-Primzahlen sind paarweise zueinander prim. Das heißt
      für
      für

Verallgemeinerung von Mersenne-Zahlen

Sei ein Polynom, bei dem der höchste Exponent niedrig sein soll (der sogenannte Grad des Polynoms). Auch die ganzzahligen Koeffizienten sollen nicht allzu hoch sein. Dann ist eine verallgemeinerte Mersenne-Zahl. Ist sie prim, so heißt sie verallgemeinerte Mersenne-Primzahl.[24]

Mit anderen Worten: eine verallgemeinerte Mersenne-Zahl hat die Form[25]

Beispiele

  • Sei ein Polynom 1. Grades und .
    Dann ist und somit gilt:
    Diese Zahl ist eine Primzahl und somit eine verallgemeinerte Mersenne-Primzahl. Mit diesem Polynom erhält man alle Mersenne-Primzahlen.
  • Sei ein Polynom 1. Grades und .
    Dann ist und somit gilt:
    Diese Zahl ist keine Primzahl und somit zwar eine verallgemeinerte Mersenne-Zahl, aber keine verallgemeinerte Mersenne-Primzahl. Mit diesem Polynom erhält man unter anderem alle Fermat-Zahlen.
  • Sei ein Polynom 2. Grades und .
    Dann ist und somit gilt:
    Diese Zahl ist keine Primzahl und somit keine verallgemeinerte Mersenne-Primzahl, sondern nur eine verallgemeinerte Mersenne-Zahl.
  • Sei ein Polynom 2. Grades und .
    Dann ist und somit gilt:
    Diese Zahl ist eine Primzahl und somit eine verallgemeinerte Mersenne-Primzahl.
  • Sei ein Polynom 3. Grades und .
    Dann ist und somit gilt:[25]
    Diese Zahl ist ebenfalls eine Primzahl und somit eine verallgemeinerte Mersenne-Primzahl.

Eine weitere Verallgemeinerung von Mersenne-Zahlen

Mersenne-Zahlen haben die Form . Man kann sie verallgemeinern, indem man Zahlen der Form mit ganzzahligen betrachtet. Allerdings sind Zahlen der Form immer durch teilbar (siehe Faktorisierungen von Potenzsummen) und somit erhält man nie Primzahlen der Form mit und .

Wenn man aber die Zahl mit dem Faktor dividiert, so erhält man die Zahl . Diese Zahl kann sowohl prim als auch nicht prim sein. Interessant ist der Fall, wann prim ist.

Beispiele

  • Sei . Dann ist prim für folgende :
    2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343, … (Folge A004023 in OEIS)
Damit erhält man die folgenden Primzahlen:
11, 1111111111111111111, 11111111111111111111111, … (Folge A004022 in OEIS)
Diese Zahlen nennt man Repunits.
  • Sei . Dann ist prim für folgende :
    (2), 5, 11, 109, 193, 1483, 11353, 21419, 21911, 24071, 106859, 139739, 495953, … (Folge A057178 in OEIS)
Damit erhält man die folgenden Primzahlen, wobei man den ersten Wert dazuzählen kann oder auch nicht:
(-11), 19141, 57154490053, …
Die drei Zahlen, die man aus erhält, sind momentan noch nicht eindeutig als Primzahlen interpretiert worden. Sie sind sogenannte PRP-Zahlen (probable prime).[26]
  • Die kleinsten , sodass eine Primzahl ist, sind die folgenden (mit aufsteigendem ; es wird angegeben, falls es kein gibt):
    2, 3, 2, 3, 2, 5, 3, 0, 2, 17, 2, 5, 3, 3, 2, 3, 2, 19, 3, 3, 2, 5, 3, 0, 7, 3, 2, 5, 2, 7, 0, 3, 13, 313, 2, 13, 3, 349, 2, 3, 2, 5, 5, 19, 2, 127, 19, 0, 3, 4229, 2, 11, 3, 17, 7, 3, 2, 3, 2, 7, 3, 5, 0, 19, 2, 19, 5, 3, 2, 3, 2, … (Folge A084740 in OEIS)
Beispiel:
In der obigen Liste steht an der 12. Stelle der Wert 5. Weil man mit 2 zu zählen beginnen muss, ist es der zu gehörende Wert. Somit ist die kleinste Primzahl, die man mit erhalten kann.
  • Die kleinsten , sodass eine Primzahl ist, sind die folgenden (mit absteigendem ; es wird angegeben, falls es kein gibt):
    3, 2, 2, 5, 2, 3, 2, 3, 5, 5, 2, 3, 2, 3, 3, 7, 2, 17, 2, 3, 3, 11, 2, 3, 11, 0, 3, 7, 2, 109, 2, 5, 3, 11, 31, 5, 2, 3, 53, 17, 2, 5, 2, 103, 7, 5, 2, 7, 1153, 3, 7, 21943, 2, 3, 37, 53, 3, 17, 2, 7, 2, 3, 0, 19, 7, 3, 2, 11, 3, 5, 2, …
In der OEIS-Liste ist der Wert nicht erlaubt, weil man damit nur negative Primzahlen erhält. Deswegen unterscheidet sich diese obige Liste von der OEIS-Liste. Die exakte OEIS-Liste lautet wie folgt:
3, 3, 3, 5, 3, 3, 0, 3, 5, 5, 5, 3, 7, 3, 3, 7, 3, 17, 5, 3, 3, 11, 7, 3, 11, 0, 3, 7, 139, 109, 0, 5, 3, 11, 31, 5, 5, 3, 53, 17, 3, 5, 7, 103, 7, 5, 5, 7, 1153, 3, 7, 21943, 7, 3, 37, 53, 3, 17, 3, 7, 11, 3, 0, 19, 7, 3, 757, 11, 3, 5, 3, … (Folge A084742 in OEIS)
Beispiele:
  • In der obigen ersten Liste steht an der 12. Stelle der Wert 3. Weil man mit −2 zu zählen beginnen muss, ist es der zu gehörende Wert. Somit ist die kleinste Primzahl, die man mit erhalten kann.
  • In der obigen ersten Liste steht an der 5. Stelle der Wert 2. Weil man mit −2 zu zählen beginnen muss, ist es der zu gehörende Wert. Somit ist die kleinste Primzahl, die man mit erhalten kann. Da dieser Wert negativ ist, steht bei der OEIS-Liste an der 5. Stelle (der zu gehörende Wert) der Wert 3. Dann erhält man die kleinste positive Primzahl, die man mit erhalten kann.
  • In der obigen ersten Liste steht an der 31. Stelle der Wert 2. Weil man mit −2 zu zählen beginnen muss, ist es der zu gehörende Wert. Somit ist die kleinste Primzahl, die man mit erhalten kann. Da dieser Wert negativ ist, steht bei der OEIS-Liste an der 31. Stelle (der zu gehörende Wert) der Wert 0. Dies bedeutet, dass man mit keine positive Primzahl erhalten kann.
  • Sei die n-te Primzahl. Die kleinsten , sodass eine Primzahl ist, sind die folgenden (mit aufsteigendem ):
    2, 2, 2, 2, 5, 2, 2, 2, 10, 6, 2, 61, 14, 15, 5, 24, 19, 2, 46, 3, 11, 22, 41, 2, 12, 22, 3, 2, 12, 86, 2, 7, 13, 11, 5, 29, 56, 30, 44, 60, 304, 5, 74, 118, 33, 156, 46, 183, 72, 606, 602, 223, 115, 37, 52, 104, 41, 6, 338, 217, … (Folge A066180 in OEIS)
Beispiel:
In der obigen Liste steht an der 5. Stelle der Wert . Die 5. Primzahl ist . Somit ist die kleinste Primzahl, die man mit erhalten kann.
  • Sei die n-te Primzahl. Die betragsmäßig kleinsten negativen , sodass eine Primzahl ist, sind die folgenden (mit aufsteigendem ):
    3, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 16, 61, 2, 6, 10, 6, 2, 5, 46, 18, 2, 49, 16, 70, 2, 5, 6, 12, 92, 2, 48, 89, 30, 16, 147, 19, 19, 2, 16, 11, 289, 2, 12, 52, 2, 66, 9, 22, 5, 489, 69, 137, 16, 36, 96, 76, 117, 26, 3, … (Folge A103795 in OEIS)
Beispiel:
In der obigen Liste steht an der 5. Stelle der Wert . Die 5. Primzahl ist . Somit ist die kleinste Primzahl, die man mit , erhalten kann.

Vermutung

Es wird vermutet, dass für jedes , welches keine Potenz einer natürlichen Zahl ist, unendlich viele existieren, sodass eine Primzahl ist.

(Ist eine Potenz einer natürlichen Zahl, so kann gezeigt werden, dass es höchstens ein gibt, sodass eine Primzahl ist.)

Noch eine Verallgemeinerung von Mersenne-Zahlen

Man kann Mersenne-Zahlen auch insofern verallgemeinern, als dass man Zahlen der Form betrachtet, wobei teilerfremd, und sein muss. Die Division durch die Zahl ist notwendig, weil diese Zahl immer Teiler von ist und man nur nach dieser Division Primzahlen erhalten kann.

Verallgemeinerte Mersenne-Zahlen der Form sind gleichzeitig die Zahlen der allgemeinen Lucas-Folge , wobei und die Nullstellen der quadratischen Gleichung sind (siehe explizite Formeln).

Eigenschaften

  • Sei eine Primzahl. Dann gilt:
    • ist eine Primzahl oder
    • genau dann, wenn und ist eine Primzahl
Beweis der zweiten Behauptung:
Sei eine Primzahl (sei also ). Weil eine Primzahl ist, muss einer der beiden Faktoren sein, somit ist und muss eine Primzahl sein. Die kleinsten dieser Form lauten:
1, 2, 4, 5, 7, 9, 12, 14, 17, 19, 22, 24, 25, 29, 30, 32, 34, 35, 39, 42, 47, 50, 60, 65, 69, 70, 72, 79, 82, 84, 85, 87, 90, 97, 99, 100, … (Folge A027861 in OEIS)

Beispiele

Die folgende Tabelle gibt die kleinsten an, für welche bei gegebenem und prim ist.[27][28][29][30][31][32][33]

Bei besonders großen Zahlen ist es noch nicht gesichert, ob es sich um wirkliche Primzahlen handelt, oder ob es nur sehr wahrscheinliche Primzahlen, so genannte PRP-Zahlen (probably primes) sind. Diese Zahlen werden in Klammern gesetzt.[34][35]

Reihenentwicklungen

Produktreihen

Wenn die Mersenne-Zahlen durch ihre nachfolgenden Zweierpotenzen geteilt werden und diese so entstehenden Brüche bis in den unendlichen Index miteinander multipliziert werden, dann entsteht ein fester Wert, welcher sich mit Hilfe elliptischer Funktionen ausdrücken lässt. Bei diesem Produkt liegt Konvergenz vor:

Denn es gilt gründsätzlich für alle Werte x die folgende[36][37][38] elliptische Beziehungsgleichung:

Das Produkt am linken Rand dieser Gleichungskette wird Pochhammer-Produkt genannt.

Die zuerst gezeigte Summe in dieser Gleichungskette zeigt den Pentagonalzahlensatz mit den Fünfeckszahlen und den Kartenhauszahlen in den Exponenten[39] der x-Potenzen. Diese Fünfeckszahlen und Kartenhauszahlen haben bezüglich des Index z genau diese Beziehungen:

Die Zahlenfolge ist die strikte Partitionszahlenfolge. Sie gibt die Anzahl der strikten Partitionen bei gegebenen Summen k an. Strikte Partitionen liegen dann vor, wenn jeder Summand nur einmal[40] in der Partitionssumme vorkommen darf und somit kein Summand wiederholt in der Partitionssumme auftaucht.

Mit dem Kürzel wird die Gruppe der Jacobischen Thetafunktionen zum Ausdruck gebracht.

Die sogenannten Theta-Nullwert-Funktionen sind wie folgt definiert:

Die hier dargestellten Summendefinitionen stimmen mit den ebenso hier dargestellten Produktdefinitionen überein.

Diese drei Funktionen stellen die Zusammenhänge zwischen dem elliptischen Nomen[41] und dem vollständigen elliptischen Integral erster Art her:

Eine weitere Produktreihe über die Mersenne-Zahlen lässt sich auf folgende Weise formulieren:

Hierbei wurde der Quotient gebildet.

Summenreihen

Die unendliche Summe der Kehrwerte der Mersenne-Zahlen wird Erdős-Borwein-Konstante genannt.

Sie hat zu der Lambertschen L-Funktion folgende Beziehung:

Und die Lambertsche L-Funktion hat diese Definition:

Literatur

  • Paulo Ribenboim: The new book of prime number records. 3rd edition. Springer, New York NY u. a. 1996, ISBN 0-387-94457-5 (Deutsch: Die Welt der Primzahlen. Geheimnisse und Rekorde. Auf den neuesten Stand gebracht von Wilfrid Keller. 2. vollständig überarbeitete und aktualisierte Auflage. Springer, Berlin u. a. 2011, ISBN 978-3-642-18078-1 (Springer-Lehrbuch)).
  • Wie eine neue Mersenne Primzahl entdeckt wurde. In: taz, 11. März 2005; dpa-Hintergrundbericht

Weblinks

Einzelnachweise

  1. Marin Mersenne: Cogitata Physico-Mathematica. In quibus tam naturae quàm artis effectus admirandi certissimis demonstrationibus explicantur. Paris: Bertier, 1644, Praefatio generalis, Nr. XIX.
  2. Jochen Ziegenbalg: Elementare Zahlentheorie. Beispiele, Geschichten, Algorithmen. 2. Auflage. Springer, Wiesbaden 2015, ISBN 978-3-658-07170-7, S. 74.
  3. Hudalrichus Regius: Vtrivsque Arithmetices epitome ex uarijs authoribus concinnata. Straßburg: Bartholomäus Grüninger, 1536, S. VIIIv-IXv, Kap. 6 (De perfecto [Über die vollkommenen Zahlen]).
  4. Johann Scheubel: Das sibend, acht vnd neunt buch, des hochberümbten Mathematici Euclidis Megarensis, in welchen der operationen vnnd regulen aller gemainer rechnung, vrsach grund vnd fundament, angezaigt wirt, zu gefallen allen den, so die kunst der Rechnung liebhaben […] auß dem latein ins teütsch gebracht, vnnd mit gemainen exemplen also illustrirt vnnd an tag geben, das sy ein yeder gemainer Rechner leichtlich verstehn, vnnd ime nutz machen kan. Valentin Ottmar, Augsburg 1555, S. CCXXXI-CXXXIIII (Euklid IX, 36), hier S. CCXXXIII.
  5. Ralph Ernest Powers: The Tenth Perfect Number. In: American Mathematical Monthly, 18, 1911, Nr. 11, S. 195–197.
  6. Ralph Ernest Powers: A Mersenne prime. (PDF; 89 kB) In: Bulletin of the American Mathematical Society, 20, 1914, S. 531. Ralph Ernest Powers: Certain composite Mersenne’s numbers. In: Proceedings of the London Mathematical Society, 15, 1916, Nr. 2, S. xxii; E. Fauquembergue: Nombres de Mersenne. In: Sphinx-Œdipe, 9, 1914, S. 103–105; 15, 1920, S. 17–18. Chris K. Caldwell: M107: Fauquembergue or Powers?
  7. Derrick Henry Lehmer: Note on Mersenne Numbers. (PDF; 145 kB) In: Bulletin of the American Mathematical Society, 38, 1932, S. 383–384.
  8. pentagon.kappamuepsilon.org (Memento vom 22. Oktober 2015 im Internet Archive) (PDF)
  9. Ralph Ernest Powers: Note on a Mersenne Number. (PDF; 69 kB) In: Bulletin of the American Mathematical Society, 40, 1934, S. 883.
  10. Horace S. Uhler: A New Result Concerning a Mersenne Number. In: Mathematical Tables and other Aids to Computation 1 (1944), S. 333, 404. Vgl. Charles B. Barker: Proof that the Mersenne Number M167 is Composite. (PDF; 70 kB) In: Bulletin of the American Mathematical Society, 51, 1945, S. 389. H. S. Uhler: Note on the Mersenne Numbers M157 and M167. (PDF; 107 kB) In: Bulletin of the American Mathematical Society, 52, 1946, S. 178.
  11. Horace S. Uhler: A New Result Concerning a Mersenne Number. In: Mathematical Tables and other Aids to Computation 2 (1945), S. 94.
  12. Horace S. Uhler: On Mersenne’s Number M199 and Lucas’s Sequences. (PDF; 212 kB) In: Bulletin of the American Mathematical Society, 53, 1947, S. 163–164.
  13. Horace S. Uhler: On All of Mersenne’s Numbers Particularly M193. (PDF; 200 kB) In: Proceedings of the National Academy of Sciences, 34, 1948, S. 102–103. Horace S. Uhler: On Mersenne’s Number M227 and Cognate Data. (PDF; 320 kB) In: Bulletin of the American Mathematical Society, 54, 1948, Nr. 4, S. 378–380. Raymond Clare Archibald: Mersenne Numbers. In: Mathematical Tables and other Aids to Computation, 3, 1949, S. 398.
  14. Donald B. Gillies: Three New Mersenne Primes and a Statistical Theory. In: Mathematics of Computation, 18, 1964, S. 93–97. Bryant Tuckerman: Corrections. In: Mathematics of Computation, 31, 1977, S. 1051.
  15. a b Andreas Stiller: Neue größte bekannte Primzahl mit über 22 Millionen Stellen gefunden. In: heise online. Abgerufen am 20. Januar 2016.
  16. a b GIMPS: Discovery of the 50th known Mersenne Prime. Abgerufen am 3. Januar 2018.
  17. a b Mersenne Prime Discovery - 2^82589933-1 is Prime! 21. Dezember 2018, abgerufen am 22. Dezember 2018.
  18. Aus dieser Liste lassen sich die Sophie-Germain-Primzahlen mit weglassen, weil für diese wie oben beschrieben 2p+1 ein Teiler von M_p ist (wie z. B. p = 11 → Teiler 23); diese machen aber für große p nur einen Bruchteil aller Primzahlen aus, vergleiche Sophie-Germain-Primzahl#Häufigkeit von Sophie-Germain-Primzahlen.
  19. 23,2 Millionen Stellen: Elektroingenieur entdeckt Rekordprimzahl
  20. a b List of known Mersenne prime numbers - PrimeNet. Abgerufen am 28. Dezember 2018.
  21. C. Pomerance: Recent developments in primality testing. In: Math. Intelligencer, 3:3, 1980/81, S. 97–105.
  22. Eric W. Weisstein: Double Mersenne Number. MathWorld (englisch)
  23. a b John B. Cosgrave: A research of Mersenne and Fermat primes. (Nicht mehr online verfügbar.) 2012, archiviert vom Original am 29. Mai 2012; abgerufen am 8. Juli 2020.
  24. Jerome A. Solinas: Generalized Mersenne Prime. Encyclopedia of Cryptography and Security, 2011, S. 509–510, abgerufen am 8. Juli 2020.
  25. a b Amos R. Omondi: Cryptography Arithmetic: Algorithms and Hardware Architectures. Springer-Verlag, 2020, S. 136–138, abgerufen am 8. Juli 2020.
  26. Extensions zu OEIS A057178
  27. Mersenne and Fermat primes field
  28. Allgemeine Repunit-Primzahlen (B^N-1)/(B-1)
  29. Allgemeine Repunitpaar-Primzahlen (B^N+1)/(B+1)
  30. Primzahlen aus Differenzen zwischen benachbarten Basen B konstanter Potenzen (B+1)^N-B^N
  31. Primzahlen aus Summen zwischen benachbarten Basen B konstanter Potenzen (B+1)^N+B^N und ((B+1)^N+B^N)/(2*B+1)
  32. Primzahlen aus Differenzen/Summen zwischen benachbarten ungeraden Basen B konstanter Potenzen ((B+2)^N-+B^N)/2
  33. Primes of the Form(bn+1)/(b+1)
  34. PRP Top Records, Search for : (a^n-b^n)/c
  35. PRP Top Records, Search for : (a^n+b^n)/c
  36. Eric W. Weisstein: Ramanujan g- and G-Functions. In: MathWorld (englisch).
  37. Eric W. Weisstein: Dedekind Eta Function. In: MathWorld (englisch).
  38. Eric W. Weisstein: q-Pochhammer Symbol. In: MathWorld (englisch).
  39. https://vdoc.pub/download/a-brief-introduction-to-theta-functions-6v41da306900
  40. code golf - Strict partitions of a positive integer. Abgerufen am 9. März 2022.
  41. https://www.researchgate.net/profile/Toshio-Fukushima/publication/226331661_Fast_computation_of_complete_elliptic_integrals_and_Jacobian_elliptic_functions/links/0fcfd50b44bb3e76b9000000/Fast-computation-of-complete-elliptic-integrals-and-Jacobian-elliptic-functions.pdf?origin=publication_detail

Auf dieser Seite verwendete Medien

MersennePrimeStamp.gif
This image is courtesy of Chris Caldwell. Donald B. Gillies discovered 3 new mersenne primes in early 1963. When the primes were confirmed the UIUC Math dept (which has a postal branch) used this cancellation stamp on all mail from roughly 1964 - 1976, when Appel and Haken proved the four color theorem ("Four Colors Suffice") and a new stamp was created. Trivia question : how far away from Gillies did Appel live in Urbana Illinois ?? Answer : He lived 3 houses away.
Primes.png
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0