Liste von künstlichen Objekten auf dem Mars

Mars

Die Liste von künstlichen Objekten auf dem Mars enthält die meisten künstlichen Objekte auf der Marsoberfläche.

Die meisten Sonden sind nicht mehr im Betrieb. Während der stationäre Lander Phoenix im Laufe des Jahres 2008 gestartet und beendet wurde, wurde die 2003 begonnene Mission der beiden Zwillings-Rover Spirit und Opportunity 2011 bzw. 2019 offiziell beendet. Aktuell sind auf dem Mars die mobilen Rover Curiosity, Perseverance und Zhurong sowie die stationäre Sonde InSight in Betrieb (Stand: Mai 2021).

Während über 9 Tonnen zum Mars gebracht wurden, wurde bisher nichts vom Mars zur Erde gebracht. Die Rückführung von Mars-Proben zur Erde wird frühestens nach 2025 erfolgen.

Diese Liste enthält keine kleineren Gegenstände wie Fallschirme, Hitzeschutzschilde oder die MER-Lander.

Die Objekte sind nach der Reihenfolge ihres Aufschlags beziehungsweise ihrer Landung nummeriert.

Tabelle

ObjektLandLandungMassePositionAnmerkungenBild
Mars 2Sowjetunion 1955 Sowjetunion27. Nov. 1971355 kg!453.0000005504.000000504,00° N, 47,000° WBei der Landung zerstört.1972 CPA 4113.jpg
Mars 3Sowjetunion 1955 Sowjetunion2. Dez. 1971355 kg!342.0000005455.000000545,00° S, 158,00° W

Terra Sirenum

Marsoberfläche erreicht, verstummte nach 20 s Funkübertragung.1972 CPA 4114.jpg
Mars 6Sowjetunion 1955 Sowjetunion12. März 1974355 kg!480.6000005470.100000529,90° S, 19,400° W

Terra Margaritifer

Marsoberfläche erreicht, vermutlich bei der Landung umgekippt.Mars3 iki.jpg
Viking 1Vereinigte Staaten USA
(NASA)
20. Juli 1976657 kg!452.0300005522.480000522,48° N, 47,970° W

Chryse Planitia

Erfolgreich, hatte bis zum 11. November 1982 Kontakt.
Viking lander model.jpg
Viking 2Vereinigte Staaten USA
(NASA)
3. Sep. 1976657 kg!634.0100005548.270000548,27° N, 134,01° O

Utopia Planitia[1]

Erfolgreich, hatte bis zum 11. April 1980 Kontakt.
Viking lander model.jpg
Mars Pathfinder (MPF)Vereinigte Staaten USA
(NASA)
4. Juli 1997264 kg!466.4000005519.300000519,30° N, 33,600° W

Ares Vallis

Erfolgreich, das erste von Menschen gebaute motorisierte Fahrzeug auf der Marsoberfläche (Sojourner). Der Rover hatte ein Gewicht von 11,5 kg. Letzte Übertragung am 27. September 1997.
Lander and rover drawing.gif
Mars Climate OrbiterVereinigte Staaten USA
(NASA)
23. Sep. 1999629 kgunbekanntFehlschlag, aufgrund eines Einheitenfehlers im Navigationssystem.
Mars Climate Orbiter 2.jpg
Mars Polar Lander
mit
Deep Space 2
Vereinigte Staaten USA
(NASA)
3. Dez. 1999354 kg!665.0000005424.000000576,00° S, 165,00° O

Ultimi Scopuli

Fehlschlag, beim Landevorgang zerschellt, da sich die Landetriebwerke zu früh abschalteten
Mars polar lander.jpg
Beagle 2Europa Europa
(ESA)
25. Dez. 200333 kg!590.0000005510.600000510,60° N, 90,000° O

Isidis Planitia

Fehlschlag, es konnte kein Funkkontakt hergestellt werden.
Beagle 2 replica.jpg
Spirit (MER-A)Vereinigte Staaten USA
(NASA)
4. Jan. 2004820 kg!675.4800005485.400000514,60° S, 175,48° O

Gusev-Krater

Erfolgreich, hatte bis zum 22. März 2010 Kontakt. Der Rover hat ein Gewicht von 185 kg.
NASA Mars Rover.jpg
Opportunity (MER-B)Vereinigte Staaten USA
(NASA)
25. Jan. 2004820 kg!494.4700005498.050000501,95° S, 5,5300° W

Meridiani Planum

Erfolgreich, das Gewicht des Rovers beträgt 185 kg. Letzter Kontakt am 10. Juni 2018
NASA Mars Rover.jpg
PhoenixVereinigte Staaten USA
(NASA)
25. Mai 2008410 kg!374.3000005568.200000568,20° N, 125,70° W

Vastitas Borealis

Erfolgreich, Entdeckung von Wassereis. Letzter Kontakt 2. November 2008
Pia09344.jpg
CuriosityVereinigte Staaten USA
(NASA)
6. Aug. 2012899 kg!637.4200005495.510000504,49° S, 137,42° O

Gale Krater

Aktiv
Mars Science Laboratory Curiosity rover.jpg
SchiaparelliEuropa Europa
(ESA)
19. Okt. 2016577 kg!506.2100005502.050000502,05° N, 6,2100° O Meridiani PlanumVerlust des Funkkontaktes kurz vor der Landung, beim Aufschlag zerstört.
Schiaparelli landing on Mars.png
InSightVereinigte Staaten USA
(NASA)
26. Nov. 2018694 kg!635.0000005504.500000504,50° N, 135,00° O

Elysium Planitia

Aktiv
Eines der beiden Hauptinstrumente versagte.
PIA22228 InSight.jpg
PerseveranceVereinigte Staaten USA
(NASA)
18. Feb. 20211025 kg!577.4510005518.445000518,45° N, 77,450° O Jezero-KraterAktiv
Erstmaliger Einsatz einer Helikopterdrohne auf einem anderen Himmelskörper.
PIA23962-Mars2020-Rover&Helicopter-20200714.jpg
ZhurongChina Volksrepublik VR China
(CNSA)
15. Mai 2021240 kg!609.9000005525.100000525,10° N, 109,90° O Utopia PlanitiaAktiv
Modell des Rovers auf dem IAC 2018 in Bremen
17 MissionenGesamtmasse9144 kg2x erfolgreich und aktiv in der Primärmission, 1x teilweise erfolgreich und aktiv, 1x aktiv in der Sekundärmission, 6x erfolgreich und inaktiv, 7x Fehlschlag

Karte mit Landepositionen

Mars map with landing site Tianwen-1.png

Bildergalerie

Siehe auch

Quellen

Einzelnachweise

  1. „Viking 2 Lander“ im NSSDCA Master Catalog, abgerufen am 26. Januar 2013 (englisch).

Auf dieser Seite verwendete Medien

Flag of the Soviet Union (1955-1980).svg
(c) I, Cmapm, CC BY-SA 3.0
The flag of the Soviet Union (1955-1991) using a darker shade of red.
Schematic of the flag as adopted in 1955.
Flag of the Soviet Union (dark version).svg
(c) I, Cmapm, CC BY-SA 3.0
The flag of the Soviet Union (1955-1991) using a darker shade of red.
Schematic of the flag as adopted in 1955.
Flag of Europe.svg
Die Europaflagge besteht aus einem Kranz aus zwölf goldenen, fünfzackigen, sich nicht berührenden Sternen auf azurblauem Hintergrund.

Sie wurde 1955 vom Europarat als dessen Flagge eingeführt und erst 1986 von der Europäischen Gemeinschaft übernommen.

Die Zahl der Sterne, zwölf, ist traditionell das Symbol der Vollkommenheit, Vollständigkeit und Einheit. Nur rein zufällig stimmte sie zwischen der Adoption der Flagge durch die EG 1986 bis zur Erweiterung 1995 mit der Zahl der Mitgliedstaaten der EG überein und blieb daher auch danach unverändert.
Curiosity - The Next Mars Rover.jpg
This artist concept features NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011. In this picture, the rover examines a rock on Mars with a set of tools at the end of the rover's arm, which extends about 2 meters (7 feet). Two instruments on the arm can study rocks up close. Also, a drill can collect sample material from inside of rocks and a scoop can pick up samples of soil. The arm can sieve the samples and deliver fine powder to instruments inside the rover for thorough analysis. The mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. This mast supports two remote-sensing instruments: the Mast Camera, or "eyes," for stereo color viewing of surrounding terrain and material collected by the arm; and, the ChemCam instrument, which is a laser that vaporizes material from rocks up to about 9 meters (30 feet) away and determines what elements the rocks are made of.
Lander and rover drawing.gif
Mars Pathfinder - probe and rover after landing
Mars Global Remote Sensing Orbiter and Small Rover at IAC Bremen 2018 07.jpg
Autor/Urheber: Pablo de León, Lizenz: CC BY-SA 3.0
Mockup of the Mars Global Remote Sensing Orbiter and Small Rover at the 69th International Astronautical Congress 2018 at Bremen
Schiaparelli landing on Mars.png
Autor/Urheber: Rlevente, Lizenz: CC BY-SA 4.0
Schiaparelli landing on Mars (photomontage)
PIA23962-Mars2020-Rover&Helicopter-20200714.jpg
PIA23962: Portrait of Perseverance and Ingenuity (Artist's Concept)

In February 2021, NASA's Mars 2020 Perseverance rover and NASA's Ingenuity Mars Helicopter (shown in an artist's concept) will be the agency's two newest explorers on Mars. Both were named by students as part of an essay contest.

Perseverance is the most sophisticated rover NASA has ever sent to Mars. Ingenuity, a technology experiment, will be the first aircraft to attempt controlled flight on another planet. Perseverance will arrive at Mars' Jezero Crater with Ingenuity attached to its belly.

NASA's Jet Propulsion Laboratory built and will manage operations of Perseverance and Ingenuity for the agency. Caltech in Pasadena, California, manages JPL for NASA.

For more information about the Mars 2020 Perseverance mission, go to https://mars.nasa.gov/perseverance.

For more information about Ingenuity, go to https://mars.nasa.gov/technology/helicopter.
PIA22228 InSight.jpg
An artist's rendition of the InSight lander operating on the surface of Mars.

InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a lander designed to give Mars its first thorough check up since it formed 4.5 billion years ago. It is scheduled to launch from Vandenberg Air Force Base on the California coast between May 5 through June 8, 2018, and land on Mars six months later, on Nov. 26, 2018.

InSight complements missions orbiting Mars and roving around on the planet's surface. The lander's science instruments look for tectonic activity and meteorite impacts on Mars, study how much heat is still flowing through the planet, and track the planet's wobble as it orbits the sun. This helps answer key questions about how the rocky planets of the solar system formed. So while InSight is a Mars mission, it's also more than a Mars mission.

Surface operations begin a minute after landing at Elysium Planitia. The lander's prime mission is one Mars year (approximately two Earth years).
Phoenix seen by HiRise.jpg
Phoenix spacecraft, as seen by HiRise (High Resolution Imaging Science Experiment), a camera on the Mars Reconnaissance Orbiter.
Viking lander model.jpg
Autor/Urheber: Mark Pelligrino, Lizenz: CC BY-SA 3.0
Viking lander proof test article in the National Air and Space Museum, Smithsonian Institute, Washington, D.C.
Mars Hubble.jpg
NASA's Hubble Space Telescope took the picture of Mars on June 26, 2001, when Mars was approximately 68 million kilometers (43 million miles) from Earth — the closest Mars has ever been to Earth since 1988. Hubble can see details as small as 16 kilometers (10 miles) across. The colors have been carefully balanced to give a realistic view of Mars' hues as they might appear through a telescope. Especially striking is the large amount of seasonal dust storm activity seen in this image. One large storm system is churning high above the northern polar cap (top of image), and a smaller dust storm cloud can be seen nearby. Another large dust storm is spilling out of the giant Hellas impact basin in the Southern Hemisphere (lower right).
Pathfinder01.jpg
Sojourner rover taking an Alpha Proton X-ray Spectrometer measurement of Yogi.
Pathfinder mission - Mars exploration - NASA
Mars Viking 22e169.png

Original Caption Released with NASA Image:

Photo from Viking Lander 2 shows late-winter frost on the ground on Mars around the lander. The view is southeast over the top of Lander 2, and shows patches of frost around dark rocks. The surface is reddish-brown; the dark rocks vary in size from 10 centimeters (four inches) to 76 centimeters (30 inches) in diameter. This picture was obtained September 25, 1977. The frost deposits were detected for the first time 12 Martian days (sols) earlier in a black-and-white image. Color differences between the white frost and the reddish soil confirm that we are observing frost. The Lander Imaging Team is trying to determine if frost deposits routinely form due to cold night temperatures, then disappear during the warmer daytime. Preliminary analysis, however, indicates the frost was on the ground for some time and is disappearing over many days. That suggests to scientists that the frost is not frozen carbon dioxide (dry ice) but is more likely a carbon dioxide clathrate (six parts water to one part carbon dioxide). Detailed studies of the frost formation and disappearance, in conjunction with temperature measurements from the lander’s meteorology experiment, should be able to confirm or deny that hypothesis, scientists say.
MER vs. Sojourner PIA04827.jpg
Two generations of Rover: Mars Exploration Rover vs. Sojourner rover.
NASA Mars Rover.jpg
An artist's concept portrays a NASA Mars Exploration Rover on the surface of Mars. Rovers Opportunity and Spirit were launched a few weeks apart in 2003 and landed in January 2004 at two sites on Mars. Each rover was built with the mobility and toolkit to function as a robotic geologist.
Mars map with landing site Tianwen-1.png
Autor/Urheber: NASA/GSFC/Kaynouky, Lizenz: CC BY-SA 4.0
A topological map of Mars with successful landings (green), failures (red), successful landings but loss of the probe (orange), incoming landing(s) (pink), the two pre-selected landing sites of Tianwen-1 and the final chosen landing site.
Mars3 iki.jpg
The Mars 3 spacecraft
Pia09344.jpg
NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this artist's depiction of the spacecraft fully deployed on the surface of Mars. Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface. Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level. The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark "wings" to either side of the lander's main body are solar panels for providing electric power. The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California Institute of Technology in Pasadena.
Beagle 2 replica.jpg
Autor/Urheber: user:geni, Lizenz: CC BY-SA 4.0
Photo of a Beagle 2 replica in the London Science Museum
Mars Climate Orbiter 2.jpg
Artist's rendering of the Mars Climate Orbiter
Mars polar lander.jpg
Front illustration of Mars Polar Lander