Hopf-Bifurkation

Komplexe Eigenwerte einer beliebigen Abbildung (Punkte). Bei der Hopf-Bifurkation überquert ein Paar komplex konjugierter Eigenwerte die imaginäre Achse.

Eine Hopf-Bifurkation oder Hopf-Andronov-Bifurkation ist ein Typ einer lokalen Bifurkation in nichtlinearen Systemen. Sie ist benannt nach dem deutsch-amerikanischen Mathematiker Eberhard Frederich Ferdinand Hopf[1] bzw. nach Alexander Alexandrowitsch Andronow, der sie mit Witt und Chaikin in der Sowjetunion in den 1930er Jahren behandelte. Die Wurzeln der Theorie gehen aber auf Henri Poincaré Ende des 19. Jahrhunderts zurück.

Bei einer Hopf-Bifurkation überquert an einem Gleichgewichtspunkt (Fixpunkt) des Systems ein Paar komplex konjugierter Eigenwerte der aus der Linearisierung des Systems resultierenden Jacobimatrix die imaginäre Achse der komplexen Ebene; am Bifurkationspunkt selbst sind die konjugierten Eigenwerte also rein imaginär. Die Hopf-Bifurkationen können nur in zwei- oder höherdimensionalen Systemen auftreten, da die Linearisierung des Systems mindestens zwei Eigenwerte ("ein Paar") besitzen muss.

1: Superkritische Hopf-Bifurkation, 2: Subkritische Hopf-Bifurkation. Mögliche Trajektorien in Rot, stabile Strukturen in Dunkelblau, instabile Strukturen in gestricheltem Hellblau.

Die Normalform der Hopf-Bifurkation ist

Dabei ist

  • eine komplexe Größe
  • t die Zeit
  • i die imaginäre Einheit
  • , und sind reelle Parameter
    • ist ein Eigenwert.

Hopf-Bifurkationen zeichnen sich dadurch aus, dass bei der Variation eines Parameters ein Grenzzyklus aus einem Gleichgewicht entsteht. Es werden zwei Fälle unterschieden, je nachdem, ob ein stabiler Grenzzyklus entsteht (superkritische Hopf-Bifurkation) oder ein instabiler Grenzzyklus (subkritische Hopf-Bifurkation, vgl. nebenstehende Abbildung):[2]

  • Im Fall der superkritischen Hopf-Bifurkation () tritt für ein stabiler Fixpunkt auf, der beim Übergang zu in einen instabilen Fixpunkt bzw. einen stabilen Grenzzyklus übergeht.
  • Im Fall der subkritischen Hopf-Bifurkation () tritt bei ein instabiler Grenzzyklus bzw. ein stabiler Fixpunkt auf, der mit in einen instabilen Fixpunkt übergeht.

Die Parameter und bestimmen im Wesentlichen die Stabilität des Systems nahe , wohingegen die Rotation der Trajektorien und damit auch die Windungsrichtung beeinflusst.

Die Kodimension der Hopf-Bifurkation ist wie bei der Sattel-Knoten-Bifurkation, der Pitchfork-Bifurkation und der Transkritischen Bifurkation gleich eins; diese anderen Typen von Bifurkationen der Kodimension 1 zeichnen sich jedoch am Fixpunkt durch einen Eigenwert der Jacobimatrix aus.

Literatur

  • John Guckenheimer, Philip Holmes: Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, ISBN 0-387-90819-6
  • Yu.A. Kuznetsov: Elements of Applied Bifurcation Theory, Springer, 3. Auflage 2004
  • Jerrold E. Marsden, M. McCracken: Hopf Bifurcation and its Applications, Springer 1976

Weblinks

  • Artikel. In: Scholarpedia. (englisch, inkl. Literaturangaben) (Yuri Kuznetsov, Andronov-Hopf Bifurcation)

Einzelnachweise

  1. Hopf, Abzweigung einer periodischen Lösung eines Differentialsystems, Berichte der Mathematisch-Physikalischen Klasse der Sächs. Akad. Wiss. Leipzig, Band 94, 1942, S. 1–22
  2. Yuri Kuznetsov, Andronov-Hopf Bifurcation, Scholarpedia, siehe Weblinks

Auf dieser Seite verwendete Medien

Hopfbifurcation.png
Autor/Urheber: Hannes Vogel, Lizenz: CC BY-SA 4.0
Dynamik der Hopf-Bifurkation nahe . Mögliche Trajektorien in Rot, stabile Strukturen in Dunkelblau, instabile Strukturen in gestricheltem Hellblau. Superkritische Hopf-Bifurkation: 1a) stabiler Fixpunkt 1b) instabiler Fixpunkt, stabiler Grenzzyklus 1c) gesamter Phasenraum. Superkritische Hopf bifurcation: 2a) stabiler Fixpunkt, instabiler Grenzzyklus 2b) instabiler Fixpunkt 2c) gesamter Phasenraum. bestimmt die Rotation der Trajektorien und damit auch die Windungsrichtung.
Hopfeigenvalues.png
Autor/Urheber: Hannes Vogel, Lizenz: CC BY-SA 4.0
Komplexe Eigenwerte einer beliebigen Abbildung (Punkte). Bei der Hopf-Bifurkation überquert ein Paar komplex konjugierter Eigenwerte die imaginäre Achse.