Flugzeug

Cessna 172: Mit mehr als 44.000 Exemplaren der meistgebaute Flugzeugtyp weltweit
Airbus A380: Das größte in Serienfertigung produzierte zivile Verkehrsflugzeug in der Geschichte der Luftfahrt
Kampfflugzeuge verschiedenster Generationen über New York – Die General Dynamics F-16, North American P-51, Fairchild-Republic A-10 und McDonnell Douglas F-15 (v. l. n. r.)

Ein Flugzeug ist ein Luftfahrzeug, das schwerer als Luft ist und den zu seinem Fliegen nötigen dynamischen Auftrieb mit nicht-rotierenden Auftriebsflächen erzeugt. In der enger gefassten Definition der Internationalen Zivilluftfahrtorganisation (ICAO) ist es auch immer ein motorisiertes Luftfahrzeug. Der Betrieb von Flugzeugen, die am Luftverkehr teilnehmen, wird durch Luftverkehrsgesetze geregelt.

Umgangssprachlich werden Flugzeuge mitunter auch Flieger genannt,[1] der Ausdruck Flieger hat als Hauptbedeutung jedoch den Piloten.

Definition

Die Internationale Zivilluftfahrtorganisation (International Civil Aviation Organization, ICAO) definiert den Begriff Flugzeug wie folgt:

Aeroplane. A power-driven heavier-than-air aircraft, deriving its lift in flight chiefly from aerodynamic reactions on surfaces which remain fixed under given conditions of flight.

International Civil Aviation Organization[2]

Im rechtlichen Sprachgebrauch ist ein Flugzeug ein motorgetriebenes Luftfahrzeug, schwerer als (die von ihm verdrängte) Luft, das seinen Auftrieb durch Tragflächen erhält, die bei gleichbleibenden Flugbedingungen unverändert bleiben, allgemeinsprachlich Motorflugzeug genannt. Wenn in einem Gesetzestext also von Flugzeugen die Rede ist, dann sind immer nur Motorflugzeuge gemeint, nicht aber Segelflugzeuge, Motorsegler und Ultraleichtflugzeuge. Letztere sind in Deutschland eine Unterklasse der Luftsportgeräte.

Manche Autoren verwenden eine weiter gefasste Definition, nach der auch die Drehflügler eine Untergruppe der Flugzeuge darstellen. Die eigentlichen Flugzeuge werden dann zur besseren Abgrenzung als Starrflügler, Starrflügelflugzeug oder Flächenflugzeug bezeichnet.[3][4] Diese Einordnung widerspricht aber sowohl der rechtlichen Definition als auch dem allgemeinen Sprachgebrauch und kann damit als veraltet betrachtet werden.[5]

Die in diesem Artikel verwendete Definition richtet sich nach der umgangssprachlichen Bedeutung des Begriffes Flugzeug, die sämtliche Luftfahrzeuge umfasst, die einen Rumpf mit festen Tragflächen besitzen.[6][7]

Abgrenzung zu anderen Luftfahrzeugen

Fairey Rotodyne: Ein Kombinationsflugschrauber mit Tragflächen
Raumgleiter wie das Space Shuttle starten wie Raketen und landen wie Flugzeuge
Das VTOL UAV Hummingbird fliegt durch Flügelschlag

Bei Flugzeugen wird der Auftrieb – bei der Vorwärtsbewegung des Luftfahrzeugs – durch die Umlenkung der notwendigen Luftströmung an den Tragflächen (mit geeignetem Profil und Anstellwinkel) erzeugt. Durch die Umlenkung wird der Luft ein senkrecht nach unten gerichteter Impuls übertragen. Nach dem ersten Newtonschen Gesetz erfordert diese Richtungsänderung der Strömung nach unten eine stetig wirkende Kraft. Nach dem dritten Newtonschen Gesetz (Actio und reactio) wirkt dabei eine gleiche und entgegengesetzte Kraft, der Auftrieb, auf die Tragfläche.[8]

Neben der starren Verbindung von Flügel und Flugzeugrumpf gibt es mit Wandel- und Schwenkflügelflugzeugen auch einige Flugzeugtypen, bei denen die Flügel flexibel am Flugzeugrumpf fixiert sind. Damit können bei diesen Typen Einsatzanforderungen realisiert werden, die mit einer starren Tragfläche nicht möglich sind. Im weiteren Sinn benutzen das Starrflügelprinzip auch Luftfahrzeuge mit vollkommen flexiblen Tragflächen, wie Gleit- und Motorschirme, sowie mit zerlegbaren Tragflächen wie bei Hängegleitern.

Bodeneffektfahrzeuge

Bodeneffektfahrzeuge fliegen mit Hilfe von Tragflächen knapp über der Erdoberfläche und ähneln damit tief fliegenden Flugzeugen. Sie sind jedoch in der Regel nicht in der Lage, über den Einflussbereich des Bodeneffektes hinaus zu steigen, und gelten daher – ähnlich wie Luftkissenfahrzeuge – nicht als Luftfahrzeuge.

Drehflügler

Bei Drehflüglern (Hubschrauber, Helikopter) sind die Tragflächen in Form eines horizontalen Rotors aufgebaut. Die Luftströmung über den Rotorblättern ergibt sich aus der Kombination der Drehbewegung des Rotors und der anströmenden Luft aus Eigenbewegung und Wind.

Einige Drehflügler, wie zum Beispiel die Verbundhubschrauber oder Kombinationsflugschrauber, besitzen jedoch neben ihrem Hauptrotor auch mehr oder weniger lange, feste Tragflächen, die für zusätzlichen Auftrieb sorgen.

Ein Zwischending zwischen Starrflügelflugzeugen und Drehflüglern sind die Wandelflugzeuge, die im Flug die Flugmodi (Flugzustände) wechseln können.

Raketen

Anders als das Flugzeug fliegt die Rakete mit einem Raketentriebwerk (Rückstoßantrieb) durch Ausstoßen mitgeführter Stützmasse unabhängig von einer Luftströmung, auch wenn sie für Flugphasen in der Atmosphäre aerodynamische Steuerflächen haben kann. Diese dienen aber nicht dem Auftrieb, sondern nur der Stabilisierung und Steuerung. Ein Sonderfall ist der Raumgleiter, der meist mit einer Trägerrakete startet und im aerodynamischen Flug landet. Er kann als Flugzeug angesehen werden.

Rotorflugzeuge

Ein Rotorflugzeug besitzt als Tragorgane Flettner-Rotoren, die den Magnus-Effekt nutzen. Rotorflugzeuge sind selbst im Modellbau nur selten anzutreffen und haben bisher keine praktische Bedeutung. Sie dürfen nicht mit Drehflüglern verwechselt werden.

Schwingenflugzeuge

Bei Ornithoptern, auch Schwingenflugzeug genannt, bewegen sich die Tragflächen wie Vogelflügel auf und ab, um Auftrieb und Vortrieb zu erzeugen. Sie werden daher teils auch Flatterflügel genannt. Besonders in der Frühzeit der Luftfahrt wurde versucht, Schwingenflugzeuge nach dem Vorbild der Natur zu bauen. Es ist nicht bekannt, dass personentragende Flugzeuge dieses Typs bisher geflogen sind, es gibt aber funktionsfähige, ferngesteuerte Modell-Ornithopter und Kleinstdrohnen, so z. B. das DelFly der TU Delft.

Genereller Aufbau

Traditionell wird ein Flugzeug in drei Hauptgruppen (Konstruktionshauptgruppen) unterteilt: Flugwerk, Triebwerksanlage und Ausrüstung.

Flugwerk

Das Flugwerk besteht aus dem Rumpfwerk, dem Tragwerk, dem Leitwerk, dem Steuerwerk und dem Fahrwerk bei Landflugzeugen bzw. den Auftriebskörpern (Schwimmern) bei Wasserflugzeugen. Bei Senkrechtstartern und Segelflugzeugen älterer Bauart kann anstelle von Fahrwerk oder Schwimmern ein Kufenlandegestell vorhanden sein. In vielen, meist älteren Veröffentlichungen wird statt Flugwerk der Begriff Flugzeugzelle oder einfach Zelle verwendet.[9]

Rumpfwerk

Der Flugzeugrumpf ist das zentrale Konstruktionselement der meisten Flugzeuge. An ihm ist das Tragwerk angebracht, er beherbergt neben den Piloten auch einen Großteil der Betriebsausrüstung. Bei einem Passagierflugzeug nimmt der Rumpf die Passagiere auf. Oft ist auch das Fahrwerk ganz oder teilweise am Rumpf. Die Triebwerke können in den Rumpf integriert werden. Bei Flugbooten bildet der Rumpf den Haupt-Auftriebskörper.

Man unterscheidet verschiedene Rumpfformen. Heute sind runde Rumpfquerschnitte die Regel, wenn die Maschine eine Druckkabine besitzt. Frachtmaschinen besitzen oft einen rechteckigen Rumpfquerschnitt, um das Beladevolumen zu optimieren. Die meisten Flugzeuge besitzen nur einen Rumpf, daneben gibt es auch Maschinen mit Doppelrumpf und Nurflügelflugzeuge.

Tragwerk

Tragfläche mit um wenige Grad ausgefahrenen Landeklappen

Das Tragwerk besteht neben einer oder mehreren Tragflächen als Hauptkomponente aus sämtlichen Auftrieb liefernden Komponenten.

Leitwerk

Das Leitwerk besteht aus dem Höhenleitwerk mit den Höhenrudern und den zugehörigen Trimmrudern, dem Seitenleitwerk mit dem Seitenruder und dem Trimmruder dafür und den Querrudern. Zudem ist die Hauptaufgabe des Leitwerks, die gegebene Fluglage und Richtung zu stabilisieren, ferner die Steuerung um alle drei Achsen des Flugzeuges.

LeitwerkSteuerelementeWirkungAchsensystem
HöhenleitwerkHöhenflosse und HöhenruderDrehung um die Querachse (Nicken)Y-Achse
SeitenleitwerkSeitenflosse und SeitenruderDrehung um die Hochachse (Gieren)Z-Achse
FlächenleitwerkQuerruder und StörklappeDrehung um die Längsachse (Rollen)X-Achse

Steuerwerk

Das Steuerwerk oder die Steuerung besteht beim Starrflügelflugzeug aus dem Steuerknüppel oder der Steuersäule mit Steuerhorn oder Handrad und den Seitensteuerpedalen, mit denen die Steuerbefehle gegeben werden. Für die Übertragung der Steuerkräfte bzw. -signale können Gestänge, Seilzüge, Hydraulik, elektrische (Fly-by-wire) oder optische (Fly-by-light) Signale eingesetzt werden. Die Steuersäule wird bei einigen modernen Flugzeugen durch den Sidestick ersetzt.

Fahrwerk

Das Fahrwerk ermöglicht einem Flugzeug, sich am Boden zu bewegen, die erforderliche Abhebegeschwindigkeit zu erreichen, die Landestöße zu absorbieren und Stöße z. B. durch Bodenwellen zu dämpfen.

Fahrwerke werden eingeteilt in starre, halbstarre und Einziehfahrwerke. Ein starres Fahrwerk behält auch während des Fluges unverändert seine Position bei; das halbstarre Fahrwerk wird teilweise eingezogen (z. B. nur das Bugfahrwerk). Ein Einziehfahrwerk kann nach dem Start eingezogen und gegebenenfalls durch Fahrwerksklappen abgedeckt werden und muss vor der Landung wieder ausgefahren werden. Flugzeuge mit hoher Endgeschwindigkeit haben stets Einziehfahrwerke.

Fahrwerke können auch eingeteilt werden gemäß ihrer Anordnung. Weitverbreitete Fahrwerksform ist das „Bugradfahrwerk“, bei dem ein oder mehrere kleine Räder am Flugzeugvorderteil angebracht sind und das Hauptfahrwerk hinter dem Flugzeugschwerpunkt liegt. Dies ermöglicht während des Rollens am Boden gute Sicht für den Piloten im Vergleich zum ehemals weit verbreitete Heck- oder Spornfahrwerk mit einem kleinen Rad oder einem Schleifsporn am Heck; es kommt heute nur noch selten zum Einsatz. Eine Besonderheit ist das Tandemfahrwerk, bei dem die Fahrwerksteile vorne und hinten am Rumpf gleich groß sind und sich die Hauptlast teilen, das Flugzeug wird seitwärts durch Stützräder am Tragwerk stabilisiert.

Triebwerk

Turbofan-Triebwerk einer Boeing 747

Die Triebwerksanlage eines Flugzeuges umfasst einen oder mehrere Motoren (i. Allg. von gleicher Bauart) mit Zubehör. Die häufigsten Bauweisen sind: Hubkolbenmotor (Flugmotor) mit Propeller, Gasturbine (Wellenleistungstriebwerk) mit Propeller (Turboprop) sowie das Turbinen-Strahltriebwerk, meist in Turbofan-Bauweise. Selten/experimentell sind Staustrahltriebwerk, Raketentriebwerk oder Elektromotor.

Zum Zubehör gehören das Kraftstoffsystem und -leitungen, ggf. eine Schmieranlage, die Motorkühlung, Triebwerksträger und Triebwerksverkleidung.

Außerhalb der Kampffliegerei sind die Strahltriebwerke aus Wartungsgründen mittlerweile nicht mehr in Flügel oder Rumpf integriert, eine Ausnahme bildet die Nimrod MRA4.

Als Treibstoff wird meist Kerosin, AvGas, MoGas oder Ethanol verwendet.

Betriebsausrüstung

Betriebsausrüstung: Cockpit einer Dornier 228

Die Betriebsausrüstung eines Flugzeuges umfasst alle bordseitigen Komponenten eines Flugzeuges, die nicht zu Flugwerk und Triebwerk gehören und die zur sicheren Durchführung eines Fluges erforderlich sind. Sie besteht aus den Komponenten zur Überwachung von Fluglage, Flug- und Triebwerkszustand, zur Navigation, zur Kommunikation, aus Versorgungssystemen, Warnsystemen, Sicherheitsausrüstung und gegebenenfalls Sonderausrüstung. Der elektronische Teil der Betriebsausrüstung wird auch Avionik genannt.

Viele Fachautoren zählen inzwischen das Steuerwerk oder die Steuerung nicht mehr zum Flugwerk, sondern zur Betriebsausrüstung, da bei modernen Flugzeugen die Steuerung von den Sensoren der Betriebsausrüstung und von Bordrechnern wesentlich beeinflusst wird.

Bauweisen

Werkstoffe für Flugzeuge sollten eine möglichst große Festigkeit (s. a. Spezifische Festigkeit) gegenüber statischen und dynamischen Beanspruchungen besitzen, damit das Gewicht des Flugzeuges möglichst klein gehalten werden kann. Grundsätzlich eignen sich insbesondere Stähle, Leichtmetalllegierungen, Holz, Gewebe und Kunststoffe für den Flugzeugbau. Während Holz bis zu mittleren Größen sinnvoll angewendet worden ist, wird heute im Flugzeugbau allgemein die Ganzmetall- und Gemischtbauweise bevorzugt,[10] bei der verschiedene Materialien so kombiniert werden, dass sich ihre jeweiligen Vorteile optimal ergänzen.

Strukturen an Flugzeugen lassen sich durch verschiedene Konstruktions- und Bauweisen realisieren. Häufige Konstruktionsweisen sind Fachwerke, Schalen- und Halbschalenkonstruktionen; die Bauweisen werden in Holzbauweise, Gemischtbauweise, Metallbauweise und FVK-Bauweise unterschieden.

Holzbauweise

Innenansicht des in Holzbauweise gefertigten Fachwerk-Rumpfes einer Fisher FP-202

Bei der Holzbauweise wird für den Rumpf ein Gerüst aus hölzernen Längsgurten und Spanten geleimt, das anschließend mit dünnem Sperrholz beplankt wird. Die Tragfläche besteht aus einem oder zwei Holmen, an die im rechten Winkel vorne und hinten die sog. Rippen angeleimt sind. Die Rippen geben dem Flügel die richtige Form. Vor dem Holm ist der Flügel mit dünnen Sperrholz beplankt, diese Beplankung wird Torsionsnase genannt. Sie verhindert, dass sich der Flügel beim Flug parallel zum Holm verdreht. Hinter dem Holm ist der Flügel mit einem Stoff aus Baumwolle oder speziellem Kunststoff bespannt. Dieser Stoff wird auf dem Holm oder der Torsionsnase und an der Endleiste, die die Rippen an der Flügelhinterkante verbindet, festgeklebt und mit Spannlack bestrichen. Spannlack zieht sich beim Trocknen zusammen und sorgt so dafür, dass die Bespannung straff ist. Bei Motorflugzeugen muss der Stoff zusätzlich noch an den Rippen festgenäht werden. Modernere Bespannstoffe aus Kunststoff ziehen sich beim Erwärmen zusammen, sie werden zum Spannen gebügelt. In die oberen Spannlackschichten wird bei Motorflugzeugen Aluminiumpulver als UV-Schutz eingemischt. Beispiele für solche Flugzeuge sind z. B. die Schleicher Ka 2 oder die Messerschmitt M17. Die reine Holzbauweise ist inzwischen veraltet.

Halbschalenkonstruktion in Metallbauweise: Rohbau einer Bushcaddy R-80

Metallbauweise

Die Metallbauweise ist bei Motorflugzeugen die gängigste Bauweise. Der Rumpf besteht aus einem verschweißten oder vernieteten Metallgerüst, das außen mit Blech beplankt ist. Die Tragflächen bestehen aus einem, bei großen Flugzeugen auch mehreren, Holmen, an die die Rippen angenietet oder angeschraubt sind. Die Beplankung besteht wie beim Rumpf aus dünnem Blech. Eines der bekanntesten Motorflugzeuge in Metallbauweise ist die Cessna 172, aber es gibt auch Segelflugzeuge aus Metall, wie den LET L-13 Blaník.

Gemischtbauweise

Der Rumpf einer Piper PA-18 (Gemischtbauweise: Metallfachwerk und Bespannung) hier ohne Bespannung während einer Grundüberholung

Die Gemischtbauweise ist eine Mischung aus Holz- und Metallbauweise. Üblicherweise besteht hierbei der Rumpf aus einem geschweißten Metallgerüst, das mit Stoff bespannt ist, während die Flügel wie in der Holzbauweise gebaut sind. Es gibt allerdings auch Flugzeuge, deren Tragflächen ebenfalls aus einem bespannten Metallgerüst bestehen. Der Grundaufbau aus Holmen und Rippen unterscheidet sich aber nur durch die verwendeten Materialien von der Holzbauweise. Die Schleicher K 8 ist ein Flugzeug mit einem Rumpf aus Metallgerüst und hölzernen Tragflächen, bei der Piper PA-18 bestehen die Tragflächen aus einem Aluminiumgerüst.

Ein Querruder einer Schleicher ASK 21. Das FVK ist angeschliffen, die einzelnen Glasfaser-Gewebelagen sind gut erkennbar.

Kunststoffbauweise

Die Metallbauweise wird seit einigen Jahren zunehmend durch die Faser-Verbund-Kunststoff-Bauweise (kurz: FVK-Bauweise) verdrängt. Das Flugzeug besteht aus Matten, meistens Gewebe aus Glas-, Aramid- oder Kohlenstofffasern, die in Formen gelegt, mit Kunstharz getränkt und anschließend durch Erhitzen ausgehärtet werden. An den Stellen des Flugzeuges, die viel Energie aufnehmen müssen, wird zusätzlich ein Stützstoff, entweder Hartschaumstoff oder eine Wabenstruktur eingeklebt. Auch hier wird nicht auf Spanten im Rumpf und Holme in den Tragflächen verzichtet. Die FVK-Bauweise wurde zuerst im Segelflug angewendet, das erste Flugzeug dieser Bauweise war die FS 24, der Prototyp wurde 1953 bis 1957 von der Akaflieg Stuttgart gebaut. Inzwischen gehen aber auch Hersteller von Motorflugzeugen auf die FVK-Bauweise über, z. B. Diamond Aircraft oder Cirrus Design Corporation. Beispiele für die FVK-Bauweise sind der Schempp-Hirth Ventus oder die Diamond DA 40. Vor allem im Großflugzeugbau werden zurzeit auch Kombinationen aus Metallbauweise und FVK-Bauweise hergestellt. Ein populäres Beispiel ist der Airbus A380.

Wartung und Lebensdauer

Wartung

Flugzeuge unterliegen während ihrer gesamten Lebensdauer verpflichtenden Wartungsanforderungen durch zertifizierte Betriebe. Diese sind in A-, B-, C- und D-Check eingeteilt, letzterer erfolgt nach ca. sechs bis zehn Jahren oder mehreren 10.000 Flugstunden. Dabei wird das gesamte Flugzeug generalüberholt. Die Wartungsintervalle der Turbinen liegen bei 20.000 Flugstunden.

Lebensdauer

Flugzeuge unterliegen, im Gegensatz zu bestimmten Einzelkomponenten wie Fahrwerken, grundsätzlich keiner maximalen Betriebsdauer. Verkehrsflugzeughersteller setzen bei der Konstruktion für ihre Maschinen nur eine Zielgröße für die Lebensdauer fest, bei Boeing Minimum Design Service Objective, bei Airbus Design Service Goal (DSG) genannt. Diese Zielgrößen orientieren sich an der typischen Nutzung innerhalb von 20 Jahren. Die meisten Typen sind für etwa 50.000–60.000 Flugstunden konstruiert; die Zahl der möglichen Flüge schwankt zwischen 20.000 bei Langstreckenmaschinen, z. B. Boeing 747, und 75.000 bei Kurzstreckenmaschinen, z. B. Boeing 737.[11] Diese Mindestzielgrößen werden insbesondere hinsichtlich des Alters und der Flugstunden in großer Zahl überschritten.[11] Airbus bietet, noch bevor die erste Maschine die Grenze des DSG erreicht, eine erweiterte Grenze Enhanced Service Goal (ESG) in Verbindung mit bestimmten Wartungsanforderungen an.[12] Seit dem Jahr 1988 stieg durch den Vorfall bei Aloha-Airlines-Flug 243 das Thema ausgedehnte Rissbildung (Widespread Fatigue Damage, WFD) bei älteren Flugzeugen in der Aufmerksamkeit von Behörden und Herstellern. Die Federal Aviation Administration verlangt bei Flugzeugen mit einem Höchstabfluggewicht von 75.000 Pfund (34 t) seit dem Jahr 2011 mit Beginn ab 2013–2017 (je nach Alter des Flugzeugtyps) von den Herstellern die Angabe von Limits of Validity (LOV, Grenzen der Gültigkeit), bei deren Überschreitung die Flugzeuge nicht weiter betrieben werden dürfen. Diese Obergrenzen liegen deutlich oberhalb der Mindestzielgrößen mit 30.000–110.000 Flügen oder 65.000–160.000 Flugstunden[12][13][14] Boeing schätzt, dass bei Inkrafttreten für die ältesten Flugzeuge im Juli 2013 nur 25 Boeing-Maschinen weltweit oberhalb der neuen LOV liegen.[13] Militärflugzeuge werden für eine Einsatzzeit von ca. 15 Jahren konzipiert, jedoch nur für 5.000–8.000 Flugstunden.

Auf dem Rollfeld legt eine Verkehrsmaschine im Mittel 5 km pro Flug zurück. Daraus ergibt sich innerhalb der Lebensdauer eine Kilometerleistung am Boden von mehr als 250.000 km.

Grundlagen: Auftrieb und Vortrieb

Auftrieb

Kräfte am Flugzeug

Die Größe der dynamischen Auftriebskraft an einer Tragfläche (mit ihrem gegebenen Profil) wird von den Größen Anstellwinkel (dem Winkel zwischen der anströmenden Luft und der Flügelebene), der Profilform, der Tragflächengröße, der Dichte der Luft und ihrer Strömungsgeschwindigkeit bestimmt. Durch Erhöhung des Anstellwinkels bei konstanter Fluggeschwindigkeit steigt der Auftrieb proportional; dies trifft bei der Besonderheit des Überschallfluges nicht zu. Bei Lifting-Body-Flugzeugen ist der Rumpf aerodynamisch so geformt, dass er einen großen Anteil des Auftriebs liefert.

Im Geradeausflug ist die Auftriebskraft gleich der Gewichtskraft (Gleichgewicht); bei Flugmanövern wie Start und Steigflug ist sie größer, beim Sinkflug geringer als die Gewichtskraft.

Zusammenhang zwischen Auftrieb, Vortrieb und Luftwiderstand

Um sich vorwärts zu bewegen, muss das Luftfahrzeug Vortrieb erzeugen, um den Widerstand zu überwinden, der die freie Vorwärtsbewegung hemmt. Der Luftwiderstand eines Luftfahrzeuges ist abhängig

  • vom Formwiderstand, auch parasitärer Widerstand genannt, bedingt durch die Reibung der Luft am Körper des Luftfahrzeuges,
  • vom Auftrieb. Der vom Auftrieb abhängige, „induzierte“ Teil des Luftwiderstands wird induzierter Widerstand genannt.

Während sich die parasitäre Widerstandsleistung mit zunehmender Fluggeschwindigkeit in dritter Potenz der Geschwindigkeit vergrößert, verringert sich die induzierte Widerstandsleistung umgekehrt proportional. Der resultierende Gesamtwiderstand führt während des Fluges zu einem Energieverlust, der durch Energiezufuhr (Treibstoff, Sonnen- oder Windenergie) ausgeglichen werden muss, um den Flug fortzusetzen. Ist die zugeführte Energie größer als der Verlust durch den Gesamtwiderstand, wird das Luftfahrzeug beschleunigt. Diese Beschleunigung kann auch in Höhengewinn umgesetzt werden (Energieerhaltungssatz).

Maßgeblich für die aerodynamische Qualität eines Luftfahrzeugs ist sowohl ein günstiger Strömungswiderstandsbeiwert (-Wert) als auch das Verhältnis vom Widerstandsbeiwert zum Auftriebsbeiwert , die Gleitzahl .

Den Zusammenhang zwischen dem Widerstandsbeiwert und dem Auftriebsbeiwert eines bestimmten Flügelprofils und damit dessen aerodynamische Charakteristik nennt man die Profilpolare, dargestellt im Polardiagramm nach Otto Lilienthal.

Daraus ergibt sich die Auftriebsformel

sowie die Widerstandsformel

wobei und für die Beiwerte von Auftrieb und Widerstand, für Staudruck (abhängig von Geschwindigkeit und Luftdichte) und für die Bezugsfläche steht.

Fluggeschwindigkeit und Flugenveloppe

Man kann zwischen folgenden Ausdrücken für Geschwindigkeiten unterscheiden:[15]

  • Angezeigte Geschwindigkeit (engl. indicated air speed, IAS)
  • Kalibrierte Geschwindigkeit (engl. calibrated air speed, CAS), ist die um den Instrumentenfehler korrigierte IAS.
  • Äquivalenzgeschwindigkeit (engl. equivalent air speed, EAS), ist die um die Kompressibilität korrigierte CAS.
  • Wahre Geschwindigkeit (engl. true air speed, TAS), ist die um die Luftdichte in größerer Flughöhe korrigierte EAS.
  • Geschwindigkeit über Grund (engl. ground speed, GS), ist die um den Wind korrigierte TAS.
  • Mach-Zahl (engl. mach number, MN), ist eine EAS, ausgedrückt durch ein Vielfaches der Schallgeschwindigkeit.

Der Flugzeugführer bekommt über seinen Fahrtmesser die Geschwindigkeit gegenüber der umgebenden Luft angezeigt. Diese wird aus statischem und dynamischem Druck am Staurohr des Fahrtmessers ermittelt. Diese angezeigte Geschwindigkeit (indicated air speed, abgekürzt IAS) ist von der Luftdichte und somit der Flughöhe abhängig. Die IAS ist maßgeblich für den dynamischen Auftrieb. Sie hat daher die größte Bedeutung für die Piloten. In modernen Cockpits wird die IAS rechnerisch um den Instrumentenfehler korrigiert und als CAS angezeigt.

Der mögliche Geschwindigkeitsbereich eines Flugzeugs in Abhängigkeit von der Flughöhe wird durch die Flugenveloppe dargestellt. Die untere Grenze wird dabei von der Überziehgeschwindigkeit, die obere Grenze vom Erreichen der Festigkeitsgrenzen dargestellt. Bei Flugzeugen, die bedingt durch die hohe Leistung ihres Antriebs den Bereich der Schallgeschwindigkeit erreichen können, die aber nicht für Überschallflüge konstruiert sind, liegt sie in einem gewissen Abstand unterhalb der Schallgeschwindigkeit.

Wie schnell ein Flugzeug bezogen auf die Schallgeschwindigkeit fliegt, wird durch die Mach-Zahl dargestellt. Benannt nach dem österreichischen Physiker und Philosophen Ernst Mach, wird die Mach-Zahl 1 der Schallgeschwindigkeit gleichgesetzt. Moderne Verkehrsflugzeuge mit Strahltriebwerk sind i. A. optimiert für Geschwindigkeiten (IAS) von Mach 0,74 bis 0,90.

Damit die Tragfläche ausreichend Auftrieb erzeugt, wird mindestens die Minimalgeschwindigkeit benötigt. Sie wird auch als Überziehgeschwindigkeit bezeichnet, weil bei ihrem Unterschreiten ein Strömungsabriss (engl. stall) erfolgt und der Widerstand stark ansteigt, während der Auftrieb zusammenbricht. Die Überziehgeschwindigkeit verringert sich, wenn Hochauftriebshilfen (wie Landeklappen) ausgefahren sind.

Beim Drehflügler ist die Fluggeschwindigkeit durch die Aerodynamik der Rotorblätter begrenzt: Einerseits können die Blattspitzen den Überschallbereich erreichen, andererseits kann es beim Rücklauf zum Strömungsabriss kommen.

Die bezogen auf die Masse des Drehflüglers zu installierende Antriebsleistung steigt außerdem überproportional zur möglichen Maximalgeschwindigkeit.

Flugzeuge starten und landen vorteilhafterweise gegen den Wind. Dadurch wird die zum Auftrieb beitragende angezeigte Geschwindigkeit größer als die Geschwindigkeit über Grund, mit der Folge, dass wesentlich kürzere Start- und Landestrecken gebraucht werden als bei Rückenwind.

Arten des Vortriebs

Zur Erzeugung des Vortriebs gibt es verschiedene Möglichkeiten, je nachdem, ob und welche Mittel mit welchem Krafterzeugungs- und -übertragungsprinzip eingesetzt werden sollen:

ohne Eigenantrieb
Bei Segelflugzeugen, Hängegleitern und Gleitschirmen ist der Vortrieb auch ohne Eigenantrieb gewährleistet, da vorhandene Höhe verlustarm in Geschwindigkeit umgewandelt werden kann. Der Höhengewinn selbst erfolgt durch Windenschlepp, Schleppflugzeuge oder Aufwinde (z. B. Thermik oder Hang- und Wellenaufwinde), oder durch erhöhte Startposition.

Propeller in Verbindung mit Muskelkraft

Das Zaschka Muskelkraft-Flugzeug konnte 1934 in Berlin-Tempelhof ohne fremde Starthilfe Schwebeflüge von 20 Meter Länge erreichen.
Der Gossamer Albatross ist ein von Muskelkraft angetriebenes Flugzeug. Mit ihm wurde 1979 der Ärmelkanal überquert.

Eine extreme Form des Propellerantriebs stellen Muskelkraft-Flugzeuge (HPA) dar: Ein Muskelkraftflugzeug wird nur mit Hilfe der Muskelkraft des Piloten angetrieben, unter Ausnutzung der Gleiteigenschaften der Flugzeugkonstruktion, die verständlicherweise extrem leicht sein muss.

Propeller in Verbindung mit einem Elektromotor
Ein Propeller kann auch durch einen Elektromotor angetrieben werden. Diese Antriebsart wird vor allem bei Solarflugzeugen und bei Modellflugzeugen verwendet, mittlerweile auch bei Ultraleichtflugzeugen.

Propeller in Verbindung mit Kolbenmotoren
Propeller in Verbindung mit Kolbenmotoren waren bis zur Entwicklung der Gasturbine die übliche Antriebsart. Als praktische Leistungsgrenze für Flugmotoren dieser Art wurden 4.000 PS (ca. 2.900 kW) angesehen, als erreichbare Geschwindigkeit 750 km/h. Heute ist diese Antriebsart für kleinere ein- bis zweimotorige Flugzeuge üblich. Auf Grund der besonderen Anforderungen an die Sicherheit der Motoren werden spezielle Flugmotoren verwendet.

Turboprop
Propellerturbinentriebwerke – kurz Turboprop – werden für Kurz- und Regionalverkehrsflugzeuge, militärische Transportflugzeuge, Seeüberwachungsflugzeuge und ein- oder zweimotorige Geschäftsreiseflugzeuge im Unterschallbereich verwendet. Weiterentwicklungen für die zukünftige Verwendung in Verkehrsflugzeugen und militärischen Transportflugzeugen sind „Unducted Propfan“, auch „Unducted Fan“ (UDF) genannt und „Shrouded Propfan“ (z. B. MTU CRISP).

Turbinenstrahltriebwerk
Turbinen-Strahltriebwerke werden für moderne schnelle Flugzeuge bis nahe zur Schallgeschwindigkeit (bis zum Transschallgeschwindigkeitsbereich oder dem transsonischen Geschwindigkeitsbereich) oder auch für Geschwindigkeiten im Transschall- und Überschallbereich eingesetzt. Für Flüge im Bereich der Überschallgeschwindigkeit besitzen Turbostrahltriebwerke zur Leistungserhöhung oft eine Nachverbrennung.

Staustrahltriebwerk
Staustrahltriebwerke erreichen Hyperschallgeschwindigkeiten und besitzen nur wenige bewegte Teile. Sie funktionieren jedoch i. A. erst bei hohen Geschwindigkeiten und müssen erst anderweitig auf diese beschleunigt werden. Eine Kombination aus Turbostrahltriebwerk mit Nachverbrennung und Staustrahltriebwerk wird Turbostaustrahltriebwerk oder Turboramjet genannt.

Pulsstrahltriebwerk
Historisch war das Pulsstrahltriebwerk der Vorgänger des Raketentriebwerks, damals für Marschflugkörper. Aufgrund weniger bewegter Teile und einfacher Funktionsweise ist es leicht zu bauen; extrem hoher Verschleiß ermöglicht nur Betriebsdauern von (maximal) wenigen Stunden. Wegen des sehr lauten Betriebsgeräusches sind Pulsstrahltriebwerke in einigen Ländern verboten.

Raketentriebwerke
Raketentriebwerke werden bisher nur bei Experimentalflugzeugen verwendet.

Booster
Um den Vortrieb und besonders den Auftrieb beim Start von STOL-Flugzeugen zu erhöhen, wurden zeitweise auch Booster in Form von Strahltriebwerken (Beispiel: Varianten der Fairchild C-123) oder auch Feststoff- oder Dampfraketen (siehe auch Booster (Raketenantrieb)) eingesetzt.

Wandelflugzeug

Wandelflugzeuge, auch als Verwandlungsflugzeuge oder Verwandlungshubschrauber bezeichnet, nutzen beim Senkrechtstart die Konfiguration eines Hubschraubers. Beim Übergang zum Vorwärtsflug werden sie zum Starrflügler umkonfiguriert. Sie kombinieren so Vorteile von Drehflügler und Starrflügler. Die Wandlung erfolgt meist durch Kippen des Rotors, der dann als Zugtriebwerk arbeitet – Kipprotor oder Tiltrotor genannt (z. B. Bell-Boeing V-22). Zu den Wandelflugzeugen gehören auch Kippflügel-, Schwenkrotor-, Einziehrotor- und Stopprotorflugzeuge. Die meisten nicht durch Strahltriebwerke angetriebenen Senkrechtstarter (VTOL-Flugzeuge) gehören zu den Wandelflugzeugen.

Flugsteuerung

Klassische aerodynamische Flugsteuerung mit den Steuerflächen Querruder (A), Höhenruder (C) und Seitenruder (D) sowie den Bedienorganen Steuerknüppel (B) und Seitenruderpedal

Die Flugsteuerung, engl. Flight Control System (FCS), umfasst das gesamte System zur Steuerung von Flugzeugen um alle drei Raumachsen. Neben der am häufigsten im Flugzeugbau eingesetzten aerodynamischen Flugsteuerung mit Steuerflächen werden auch Gewichtssteuerungen und Schubvektorsteuerungen verwendet. Zur Flugsteuerung gehören die Steuerelemente – z. B. Steuerflächen, bewegliche Massen, Steuerdüsen –, die Bedienorgane (z. B. Steuerknüppel und Seitenruderpedal) im Cockpit und die Übertragungselemente für die Steuereingaben von den Bedienorganen zu den Steuerelementen.[16][17]

Achsen

Achsen eines Flugzeugs

Zur Beschreibung der Steuerung werden Achsen benannt: Querachse (Nicken, englisch pitch), Längsachse (Rollen, englisch roll), und Hochachse (Gieren, englisch yaw). Jeder Achse ist bei einem 3-Achs-gesteuerten Flugzeug mit aerodynamischer Flugsteuerung eine oder mehrere Steuerflächen zugeordnet. Eine 2-Achs-Steuerung verzichtet z. B. auf Querruder oder Seitenruder, die fehlende Komponente wird durch die Eigenstabilität ersetzt. Siehe auch: Roll-Pitch-Yaw-Winkel

Steuerelemente

Die Steuerelemente der verschiedenen Steuerungssysteme sind

  • bei der aerodynamischen Flugsteuerung Ruder, Klappen, verwindbare Tragflügel und/oder Leitwerke, adaptive Profile die einen Teil der Anströmung zur Steuerung umlenken;
  • bei der Gewichtssteuerung bewegliche Massen, z. B. der Körper des Piloten der relativ zum Flugzeug verlagert wird;
  • bei der Schubvektorsteuerung der Abgasstrahl eines Antriebs, der zur Steuerung gezielt gerichtet wird.

Beim Senkrechtstarter kommen als weitere Steuerungsmöglichkeiten insbesondere im Schwebe- und Transitionsflug das Kippen bzw. Schwenken von Rotoren oder Strahltriebwerken hinzu.

Ruder als Steuerflächen

Die Steuerung eines Flugzeuges sei am Beispiel der aerodynamischen Steuerung über Ruder dargestellt:

  • Die Querruder am hinteren Ende der Tragflächen steuern – immer zugleich und entgegengesetzt – die Querlage des Flugzeugs, also die Drehung um die Längsachse, das Rollen.
  • Die Höhenruder am hinteren Ende des Flugzeugs regulieren die Längsneigung, auch Nicken oder Kippen genannt, indem der Anstellwinkel verändert wird.
  • Das Seitenruder – beim konventionellen Starrflügelflugzeug am hinteren Ende des Flugzeugs – dient der Seitensteuerung, auch Wenden oder Gieren genannt.
  • Trimmruder am Höhenruder dienen der Höhentrimmung. Größere Flugzeuge haben auch Trimmruder für Quer- und Seitenruder.
  • Störklappen (englisch spoiler) dienen der Begrenzung der Geschwindigkeit im Sinkflug und der Verminderung des Auftriebs.

Das Flugzeug kann simultan um eine oder mehrere dieser Achsen drehen.

Das Höhenruder ist in der Regel hinten am Flugzeugrumpf angebracht, ebenso das Seitenruder, diese Kombination wird als Heckleitwerk bezeichnet. Abweichend davon kann die Höhensteuerung auch vorne platziert sein (Canard).

Höhen- und Seitenruder können auch kombiniert werden wie beim V-Leitwerk.

Die Funktion der Querruder kann durch gegenläufigen Ausschlag der Höhenruder ersetzt werden.

Alle Arten von Trimmrudern dienen der Stabilisierung der Flugzeuglage und erleichtern dem Piloten die Flugsteuerung. Bei modernen Flugzeugen übernimmt der Autopilot die Kontrolle der Trimmruder.

Die Hochauftriebshilfen werden beim Starten, im Steigflug und zum Landeanflug benutzt. An der Hinterkante der Flügel befinden sich die Hinterkantenauftriebshilfen oder Endklappen (flaps), die im Gegensatz zu den Rudern immer synchron an beiden Tragflügeln verwendet werden. Größere Flugzeuge und STOL-Flugzeuge haben meist auch noch Nasenauftriebshilfen in Form von Vorflügeln (Slats), Krügerklappen oder Nasenklappen (Kippnasen), die analog zu den an der hinteren Tragflächenkante gelegenen Landeklappen an der vorderen Tragflächenkante ausfahren. Durch die Klappen kann die Wölbung des Tragflügelprofils so verändert werden, dass die Abrissgeschwindigkeit gesenkt wird und auch beim langsamen Landeanflug oder im Steigflug der Auftrieb erhalten bleibt.

Für die Begrenzung der Geschwindigkeit im Sinkflug werden auf den Tragflächen angebrachte sogenannten Brems-/Störklappen, „Spoiler“ genannt, verwendet. Im ausgefahrenen Zustand vermindern sie den Auftrieb an den Tragflächen (Strömungsablösung). Durch den verringerten Auftrieb ist ein steilerer Landeanflug möglich. Spoiler werden auch zur Unterstützung der – in bestimmten Flugbereichen auch als Ersatz für – Querruder verwendet. Nach der Landung werden die Spoiler voll ausgefahren, so dass kein (positiver) Auftrieb mehr wirken kann. Dies geschieht meist durch einen Automatismus, der unter anderem durch das Einfedern des Hauptfahrwerks bei der Landung eingeleitet wird.

Es gibt auch Steuerflächen mit mehrfachen Funktionen:

  • Flaperons: arbeiten sowohl als Klappen als auch als Querruder
  • Spoilerons: arbeiten sowohl als Spoiler als auch als Querruder
  • Elevons: arbeiten sowohl als Höhenruder als auch als Querruder, insbesondere beim Nurflügel-Flugzeug

Neben der konventionellen Anordnung der Steuerflächen existieren, wie vorher angedeutet, auch Sonderformen:

  • Das Canard („Entenflugzeug“) hat das Höhenruder vorne, beispielsweise Gyroflug SC01 Speed-Canard
  • Der Nurflügel hat kein separates Höhenruder, beispielsweise der Bomber Northrop B-2
  • Die Boxwing-Tragfläche verwendet ein kombiniertes Höhen-/Querruder, Seitenruder existieren in Form von Störklappen an den äußeren Flächenenden.

Bedienorgane

Bedienorgane sind diejenigen Hebel und Pedale, die im Cockpit vom Piloten betätigt werden können und zur Steuerung des Flugzeugs dienen.

Steuerknüppel, Steuerhorn oder Sidestick
Steuerknüppel, Steuerhorn oder Sidestick dienen zur Steuerung der Querlage und der Längsneigung und steuern das Querruder und das Höhenruder.

Der Steuerknüppel eines Flugzeugs dient zum gleichzeitigen Steuern von Querneigung und Längsneigung. Er befindet sich vor dem Unterbauch des Piloten und wird normalerweise mit einer Hand gehalten.

Das Steuerhorn ist eine andere Einheit zur Steuerung von Flugzeugen um die Längs- und Querachse. Angeordnet ist es im Cockpit zentral vor dem Piloten und verfügt über Haltegriffe für beide Hände. Dabei werden die Kräfte, die während des Fluges auf das Flugzeug wirken, in Form von Widerstand und Ausschlag auf die Steuereinheit übertragen.

Ein Sidestick ist ein Steuerknüppel, der nicht zentral vor dem Piloten, sondern seitlich angeordnet ist und nur mit einer Hand bedient wird.

Seitenruderpedale
Die Pedale zur Seitensteuerung betätigen das Seitenruder und in der Regel am Boden auch die Bremsen. Bei Segelflugzeugen wird die Radbremse (wenn vorhanden) meist durch Ziehen des Bremsklappenhebels betätigt.

Trimmung
Zur dauerhaften Trimmung dienen

  • ein Trimmrad oder ein Trimmhebel zum Ausgleich von Kopf- oder Schwanzlastigkeit (Höhentrimmung),
  • eine Trimmeinheit zum Ausgleich seitlicher Kräfteunterschiede, z. B. bei mehrmotorigen Flugzeugen zur Kompensation eines Motorausfalls (Seitentrimmung).

Übertragungselemente

Die Übertragung der Steuereingaben kann erfolgen

  • mechanisch durch Stangen oder Seile,
  • hydromechanisch durch Hydraulikleitungen,
  • elektrisch durch Fly-by-Wire oder,
  • fiberoptisch durch Lichtleiter (Fly-by-Light).

Instrumente zum Erkennen der Lage im Raum

Seine Lage im Raum erkennt der Flugzeugführer entweder durch Beobachtung der Einzelheiten des überflogenen Gebiets und des Horizonts oder durch Anzeigeinstrumente (Flugnavigation). Bei schlechter Sicht dient der künstliche Horizont der Anzeige der Fluglage in Bezug auf die Nickachse, also den Anstellwinkel des Flugzeugrumpfes, und bezüglich der Rollachse, der sogenannten Querlage (Banklage). Die Himmelsrichtung, in die das Flugzeug fliegt, zeigen der magnetische Kompass und der Kurskreisel. Magnetischer Kompass und Kurskreisel ergänzen sich gegenseitig, da der Magnetkompass bei Sink-, Steig- und Kurvenflügen zu Dreh- und Beschleunigungsfehlern neigt, der Kurskreisel jedoch nicht. Der Kurskreisel hat jedoch keine eigene „nordsuchende“ Eigenschaft und muss mindestens vor dem Start (in der Praxis auch in regelmäßigen Abständen beim Geradeausflug) mit dem Magnetkompass kalibriert werden. Der Wendezeiger dient zur Anzeige der Drehrichtung und zur Messung der Drehgeschwindigkeit des Flugzeugs um die Hochachse (engl. rate of turn). Er enthält meistens eine Kugellibelle, die anzeigt, wie koordiniert eine Kurve geflogen wird.

Für die Höhensteuerung sind mindestens zwei Instrumente wichtig: Die Flughöhe wird über den barometrischen Höhenmesser dargestellt; die relative Änderung der Höhe, die sogenannte Steigrate bzw. Sinkrate, ausgedrückt als Höhenunterschied pro Zeitspanne, bekommt der Flugzeugführer über das Variometer signalisiert. Zusätzlich wird bei größeren Flugzeugen im Landeanflug die absolute Höhe über Grund über den Radarhöhenmesser angezeigt.

Weitere Klassifizierungen

Neben der naheliegenden Klassifizierung nach der Bauweise oder der Antriebsart haben sich weitere Klassifizierungen etabliert.

Klassifizierung nach Verwendungszweck

Zivilflugzeuge

Zivilflugzeuge dienen der zivilen Luftfahrt, dazu gehört die allgemeine Luftfahrt und der Linien- und Charterverkehr durch die Fluggesellschaften (Airlines). Zivilflugzeuge werden hauptsächlich nach folgendem Schema klassifiziert:

Die ersten Flugzeuge waren Experimentalflugzeuge. Experimentalflugzeuge, auch Versuchsflugzeuge genannt, dienen dem Erforschen von Techniken oder dem Testen von Forschungserkenntnissen im Bereich der Luftfahrt.

Sehr früh in der Geschichte des Flugzeugs entstanden auch die Sportflugzeuge. Ein Sportflugzeug ist ein Leichtflugzeug zur Ausübung einer sportlichen Tätigkeit, entweder zur Erholung oder bei einem sportlichen Wettkampf.

Noch vor dem Ersten Weltkrieg kam es zur Erprobung und zum Bau des Passagierflugzeugs. Passagierflugzeuge dienen dem zivilen Personentransport und werden auch als Verkehrsflugzeug bezeichnet. Kleinere Passagierflugzeuge werden auch als Zubringerflugzeuge bezeichnet. Speziell für Geschäftsreisende entworfene kleine Passagierflugzeuge sind die Geschäftsreiseflugzeuge, für die auch der engl. Ausdruck Bizjet verwendet wird, sofern sie durch Strahltriebwerke angetrieben werden.

Ein Frachtflugzeug ist ein Flugzeug zum Transport von (kommerzieller) Fracht. Flugzeugsitze sind daher nur für die Mannschaft eingebaut, meist enthalten sie heute ein Transportsystem für Paletten und Flugzeugcontainer.

Eine Unterkategorie des Frachtflugzeugs ist das Postflugzeug. Frühe Postflugzeuge konnten auch dem Transport einzelner Personen dienen.

Für den Bereich der Land- und Forstwirtschaft werden spezielle Flugzeuge verwendet, die Dünger, bodenverbessernde Stoffe und Pflanzenschutzmittel in Behältern mitführen können und über Sprühdüsen, Streuteller oder ähnliche Einrichtungen verbreiten können. Sie werden allgemein als Agrarflugzeuge bezeichnet.

Feuerlöschflugzeuge, auch „Wasserbomber“ genannt, sind Flugzeuge, die Wasser und Löschadditive in ein- oder angebauten Tanks mitführen und über Schadfeuern abwerfen können.

Es gibt unter dem Begriff Rettungsflugzeug (amtlich „Luftrettungsmittel“ genannt) verschiedene unterschiedliche Kategorien wie Rettungshubschrauber, Intensivtransporthubschrauber, Notarzteinsatzhubschrauber oder Flugzeuge zur Rückholung von Patienten aus dem Ausland. Unter den Überbegriff Search and Rescue (SAR) fallen Flugzeuge, die zum Suchen und Retten von Unfallopfern verwendet werden.

Es gibt zahlreiche Sonderbauformen wie z. B. Forschungsflugzeuge mit spezieller Ausrüstung (spezielles Radar, Fotokameras, sonstige Sensoren).

Militärflugzeuge

Militärflugzeuge sind Flugzeuge, die der militärischen Nutzung unterliegen. Ganz sauber ist die Grenze jedoch nicht immer zu ziehen. Viele Flugzeuge erfahren sowohl militärische als auch zivile Verwendung. Militärflugzeuge werden nach folgenden Verwendungszwecken unterschieden:

Ein Jagdflugzeug ist ein in erster Linie zur Bekämpfung anderer Flugzeuge eingesetztes Militärflugzeug. Heute spricht man eher vom Kampfflugzeug, da die Flugzeuge dieser Kategorie keiner eindeutigen Aufgabe zugeordnet werden können. Sie werden für den Luftkampf, die militärische Aufklärung, die taktische Bodenbekämpfung und/oder andere Aufgaben genutzt.

Ein Bomber ist ein militärisches Flugzeug, das dazu dient, Bodenziele mit Fliegerbomben, Luft-Boden-Raketen und Marschflugkörpern anzugreifen.

Ein Verbindungsflugzeug ist ein kleines Militärflugzeug, mit dem in der Regel Kommandeure transportiert werden. Es kann außerdem der Gefechtsfeldaufklärung dienen (heute nur noch bei Truppenübungen), als kleineres Ambulanzflugzeug dienen oder für Botendienste eingesetzt werden. Heute werden als Verbindungsflugzeug meistens leichte Hubschrauber eingesetzt.

Luftbetankung bezeichnet die Übergabe von Treibstoff von einem Flugzeug zu einem anderen während des Fluges. Üblicherweise ist das Flugzeug, das den Treibstoff zur Verfügung stellt, ein speziell für diese Aufgabe entwickeltes Tankflugzeug.

Ein Aufklärungsflugzeug ist ein Militärflugzeug, das für die Aufgabe konstruiert, umgebaut oder ausgerüstet ist, Informationen für die militärische Aufklärung zu beschaffen. Manchmal werden Aufklärungsflugzeuge auch als Spionageflugzeuge bezeichnet.

Ein Erdkampfflugzeug, auch Schlachtflugzeug genannt, ist ein militärischer Flugzeugtyp, der besonders für die Bekämpfung von Bodenzielen vorgesehen ist. Dieser Typus stellt eine eigene Flugzeugart dar, die ganz spezifische taktische Aufgaben erfüllen soll. Da die Angriffe in niedrigen bis mittleren Flughöhen stattfinden und mit starkem Abwehrfeuer zu rechnen ist, werden besondere Schutzmaßnahmen ergriffen, wie Panzerung der Kabine und Triebwerke gegen Bodenfeuer. Transportflugzeuge, die mit seitlich ausgerichteten Maschinenwaffen oder gar Rohrartillerie ausgerüstet sind, werden Gunship genannt. Drehflügelflugzeuge in der Rolle von Erdkampfflugzeugen werden als Kampfhubschrauber bezeichnet.

Ein Schulflugzeug, auch Trainer genannt, ist ein Flugzeug, das zur Ausbildung von Piloten benutzt wird.

Transportflugzeuge sind besondere Frachtflugzeuge, die für den militärischen Lastentransport entwickelt werden. Sie müssen robust, zuverlässig, variabel für den Personen-, Material- oder Frachttransport geeignet sowie schnell be- und entladbar sein. Transportiert werden können, auch in Kombination, zum Beispiel Hilfsgüter, Fallschirmspringer, Fahrzeuge, Panzer, Truppen oder Ausrüstung.

Die Klassifikation ist in der Praxis nicht immer streng zwischen zivil und militärisch zu trennen, denn manche Zweckbestimmung kann unabhängig vom Einsatz gegeben sein. Beispielsweise können Fracht- bzw. Transportflugzeuge je nach Fracht, Sanitätsflugzeuge je nach Arzt/Patient und Trainer je nach Lehrer/Schüler sowohl im Zivil- als auch im Militärbereich vorkommen.

Klassifizierung nach Struktur des Flugzeugs

Flugzeuge, die starre Tragflügel besitzen, werden häufig auch nach der Anzahl und Lage der Tragflügel zum Rumpf kategorisiert.

Ein Eindecker ist ein Flugzeug mit einer einzigen Tragfläche bzw. einem Paar Tragflügeln. Eindecker werden wiederum unterteilt in

  • Tiefdecker, bei denen die Unterseite der Tragfläche mit der Unterseite des Rumpfes abschließt;
  • Mitteldecker, bei denen die Tragfläche in der Mitte der Rumpfseiten angeordnet ist;
  • Schulterdecker, bei denen die Tragflächen auf oder in der Oberseite des Rumpfes angeordnet sind;
  • Hochdecker, bei denen die Tragfläche über der Oberseite des Rumpfes verstrebt angeordnet sind.

Doppeldecker ist die Bezeichnung für ein Flugzeug, das zwei vertikal gestaffelt angeordnete Tragflächen besitzt. Eine Sonderform des Doppeldeckers ist der „Anderthalbdecker“. Um die Zeit des Ersten Weltkriegs gab es auch Dreidecker.

Doppelrumpfflugzeuge besitzen zwei Rümpfe, sie sind gewissermaßen die Katamarane unter den Flugzeugen. Jeder Rumpf besitzt hierbei in der Regel ein eigenes Cockpit. Damit nicht zu verwechseln sind Flugzeuge mit einem doppelten Leitwerksträger, die jedoch nur einen Rumpf aufweisen, der meistens als Rumpfgondel ausgebildet ist.

Asymmetrische Flugzeuge sind ein sehr seltener Flugzeugtyp, das bekannteste Exemplar ist die Blohm & Voss BV 141 von 1938. Hier ist die Flugzeugkanzel auf der Tragfläche, während der Propeller und Motor den Rumpf alleine besetzen. Die Tragflächen sind asymmetrisch ausgebildet.

Als Canard oder Entenflugzeug wird ein Flugzeug bezeichnet, bei dem das Höhenleitwerk nicht konventionell am hinteren Ende des Flugzeugs montiert ist, sondern vor der Tragfläche an der Flugzeugnase; das Flugbild erinnert an eine fliegende Ente. Sind im Extremfall beide Tragflächen annähernd gleich groß, wird diese Auslegung auch als Tandemflügel bezeichnet.

Ein Nurflügel ist ein Flugzeug ohne ein separates Höhenruder, bei dem es keine Differenzierung zwischen Tragflächen und Rumpf gibt. Bildet der Rumpf selbst den Auftriebskörper und hat dieser nicht mehr die typischen Dimensionen eines Tragflügels, wird er als Lifting Body bezeichnet. Die Vereinigung dieser beiden Konzepte nennt man Blended Wing Body.

Ein Wasserflugzeug ist ein Flugzeug, das für Start und Landung auf Wasserflächen konstruiert ist. Es hat meist unter jeder der beiden Tragflächen einen leichten, bootartigen Schwimmer. Bei Flugbooten ist der gesamte Rumpf schwimmfähig. Wasserflugzeuge und Flugboote können nur vom Wasser aus starten oder im Wasser landen. Sind diese Flugzeuge mit (meist einziehbaren) Fahrwerken versehen, mit denen sie auch vom Land aus starten und auf dem Land landen können, werden sie Amphibienflugzeuge genannt.

Klassifizierung nach Start- und Landeeigenschaften

Starrflügelflugzeuge und einige Typen der Drehflügler benötigen eine mehr oder weniger präparierte Start- und Landebahn einer gewissen Länge. Die Ansprüche reichen von einem ebenen Rasen ohne Hindernisse bis zur asphaltierten oder betonierten Piste.

Flugzeuge, die mit besonders kurzen Start- und Landebahnen auskommen, werden als Kurzstartflugzeug oder STOL-Flugzeuge typisiert.

Flugzeuge, die senkrecht starten und landen können, sind Senkrechtstarter oder VTOL-Flugzeuge. Sie benötigen gar keine Start- und Landebahn, sondern nur einen festen Untergrund ausreichender Größe, der ihr Gewicht tragen kann, und auf dem der Abwind (engl. downwash), der durch das VTOL-Flugzeug erzeugt wird, nicht allzu viel Schaden anrichtet, z. B. ein Helipad.

VTOL-Flugzeuge, die auf dem Boden senkrecht nach oben stehend starten und landen, sind Heckstarter.

Unbemannte Flugzeuge

Aufklärungsdrohne Luna der Bundeswehr

Im zivilen Bereich sind unbemannte Flugzeuge meistens als Modellflugzeug gebräuchlich und werden über Funkfernsteuerungen gesteuert, selten über Programmsteuerungen.

Unbemannte Flugzeuge im militärischen oder staatlichen Einsatz werden Drohnen genannt. Das Spektrum reicht hier von Modellflugzeugen zur Zieldarstellung für Flugabwehrkanonen über unbemannte Aufklärungsflugzeuge bis hin zu unbemannten bewaffneten Kampfflugzeugen (Kampfdrohnen). Im staatlichen Bereich werden Drohnen von Polizei und Zoll zur Tätersuche und Verfolgung eingesetzt, häufig mit Video- und Wärmebildkameras, für die bisher bemannte Polizeihubschrauber eingesetzt werden. Die Steuerung erfolgt dabei ebenfalls über Funkfern- oder Programmsteuerung.

Während Drohnen in der Regel wiederverwendbar sind, werden unbemannte Flugzeuge mit fest eingebauten Sprengköpfen als Marschflugkörper bezeichnet.

Geschichte

Die Flugpioniere

1810 bis 1811 konstruierte Albrecht Ludwig Berblinger, der berühmte Schneider von Ulm, seinen ersten flugfähigen Gleiter, führte ihn jedoch der Öffentlichkeit über der Donau unter ungünstigen Windverhältnissen vor und stürzte unter dem Spott der Zuschauer in den Fluss.

Der englische Gelehrte Sir George Cayley (1773 bis 1857) untersuchte und beschrieb als Erster in grundlegender Weise die Probleme des aerodynamischen Flugs. Er löste sich vom Schwingenflug und veröffentlichte 1809 bis 1810 einen Vorschlag für ein Fluggerät „mit angestellter Fläche und einem Vortriebsmechanismus“. Er beschrieb damit als Erster das Prinzip des modernen Starrflügelflugzeugs. Im Jahr 1849 baute er einen bemannten Dreidecker, der eine kurze Strecke flog.

Der Russe Alexander Moschaiski baute ein Flugzeug mit einem Dampfmaschinenantrieb, mit dem er zwischen 1882 und 1886 mehrere Flugversuche unternahm. Das Flugzeug konnte vom Boden abheben, verlor jedoch in der Folge an Geschwindigkeit und sackte ab. Seine verbesserte Version, die mit mehr Leistung ausgestattet war, wäre nach der Schlussfolgerung des russischen Luftfahrtforschungsinstituts ZAGI (getestet 1982) flugfähig. Zu dem Flug ist es jedoch durch den Tod des Konstrukteurs nicht mehr gekommen.

Otto Lilienthal und Clement Ader

Gleitermodelle, wie sie Otto Lilienthal flog

Der Flugpionier Otto Lilienthal (1848–1896) entwickelte nach ausführlichen theoretischen und praktischen Vorarbeiten Gleitflugzeuge und führte seit 1891 (Derwitzer Apparat) mit ihnen erfolgreiche Gleitflüge nach dem Prinzip „schwerer als Luft“ durch. Er ist deutlich über 1.000-mal gesegelt. Die erzielten maximalen Flugweiten lagen bei 250 Metern (Normalsegelapparat). Die aerodynamische Formgebung seiner Tragflügel erprobte er auf seinem „Rundlaufapparat“, der von der Funktion her ein Vorgänger der modernen Windkanäle war.

Clement Ader hat mit seiner Eole den ersten (ungesteuerten) motorisierten Flug in der Geschichte ausgeführt. Bei der Eole handelte es sich um einen freitragenden Nurflügel-Eindecker, der von einer auf eine vierblättrige Luftschraube wirkenden 4-Zylinder-Dampfmaschine angetrieben wurde. Die Eole hob am 9. Oktober 1890 zu ihrem einzigen Flug ab, flog ca. 50 m weit, stürzte ab und wurde dabei zerstört.

Einen der ersten gesteuerten Motorflüge soll der deutsch-amerikanische Flugpionier Gustav Weißkopf im Jahr 1901 über eine Strecke von einer halben Meile zurückgelegt haben. Hierzu gab es lediglich Zeugenaussagen, aber keinen fotografischen Beweis.

Karl Jatho hat sich, in ihm zugeordneten handschriftlichen Notizen, „Luftsprünge“ mit seinem motorisierten Jatho-Drachen ab dem 18. August 1903 zugeschrieben, die von zunächst ca. 18 m, später bis ca. 60 m reichten. Der Zeitpunkt der Entstehung dieser Notizen und der Zeitpunkt ihrer Veröffentlichung sind unklar; ebenso unklar ist der Status von Zeugenaussagen zu diesen Luftsprüngen, die im August 1933, also 30 Jahre später, erfolgt sein sollen. Für 1907 belegte Flugversuche mit dem Jatho-Drachen scheiterten.[18]

Brüder Wright

Wright Flyer

Die herausragende flugtechnische Leistung der Brüder Wright war die Entwicklung der ersten vollständigen aerodynamischen Flugsteuerung des Flugzeugs um alle drei Raumachsen, die sie selbst als notwendige Voraussetzung für den kontrollierten Motorflug ansahen und bereits mit ihrem 1902 Wright Glider erreichten. Sie verwendeten einen Tragflächenverwindungsmechanismus, den Vorläufer des heutigen Querruders, zur Steuerung der Rollbewegung um die Längsachse (das seitliche Neigen), ein (vorn angebrachtes) Höhenruder („Canard“) für die Steuerung der Nickbewegung um die Querachse sowie ein Seitenruder für die Kontrolle des Gierens um die Hochachse, ohne welches eine Kurve weder ein- noch wieder ausgeleitet werden kann. Mit dieser Dreiachssteuerung als Basis reichten sie bereits im März 1903 das Patent ihrer Flying Machine ein (erteilt 1906). Dass sie am 17. Dezember 1903 mit ihrem Wright Flyer als Erste erfolgreich einen andauernden, gesteuerten Motorflug durchführten[19], fußte auf den praktischen Erfahrungen mit dem Glider. Darüber hinaus haben sie ihre Flüge genauestens dokumentiert und innerhalb kurzer Zeit in weiteren Flügen die Tauglichkeit ihres Flugzeuges zweifelsfrei bewiesen. Von herausragender Bedeutung ist, dass Orville Wright bereits 1904 mit dem Wright Flyer II einen gesteuerten Vollkreis fliegen konnte.

Samuel Pierpont Langley, ein Sekretär des Smithsonian-Instituts, versuchte einige Wochen vor dem Wright-Flug, sein „Aerodrome“ zum Fliegen zu bringen. Obwohl sein Versuch scheiterte, behauptete das Smithsonian-Institut einige Zeit, die Aerodrome wäre die erste „flugtaugliche Maschine“. Der Wright Flyer wurde dem Smithsonian Institut mit der Auflage gestiftet, dass das Institut keinen früheren motorisierten Flug anerkennen dürfe. Diese Auflage wurde von den Stiftern formuliert, um die frühere Darstellung des Instituts, Langley hätte mit der Aerodrome den ersten erfolgreichen Motorflug durchgeführt, zu unterbinden. Diese Auflage führte immer wieder zu der Vermutung, dass es vor den Wright Flyern erfolgreiche Versuche zum Motorflug gegeben habe, deren Anerkennung aber im Zusammenhang mit der Stiftungsauflage unterdrückt worden sei.

Die ersten Motorflugzeuge waren meistens Doppeldecker. Versuchsweise wurden auch mehr als drei Tragflächen übereinander angeordnet. Eine solche Mehrdeckerkonstruktion stammte von dem Engländer Horatio Frederick Phillips. Mit dem Fünfzigdecker „Horatio Phillips No. 2“ gelang ihm im Sommer 1907 der erste Motorflug in England.

Erste Ärmelkanalüberquerung

Im Jahr 1909 setzte Europa weitere praktische Meilensteine in der Geschichte des Flugzeugs. Am 25. Juli 1909 überquerte Louis Blériot mit seinem Eindecker Blériot XI als Erster mit einem Flugzeug den Ärmelkanal. Sein Flug von Calais nach Dover dauerte 37 Minuten bei einer durchschnittlichen Flughöhe von 100 Metern. Blériot konnte somit den von der englischen Zeitung Daily Mail für die erste Kanalüberquerung ausgelobten Geldpreis entgegennehmen. Mit der Blériot XI wurde ihr Konstrukteur „Vater der modernen Eindecker“. Der Erfolg der Maschine machte ihn zum ersten kommerziellen Flugzeughersteller.

Vom 22. bis zum 29. August 1909 fand mit der „Grande Semaine d’Aviation de la Champagne“ eine Flugschau bei Reims statt, die mehrere Rekorde bescherte: Henri Farman flog eine Strecke von 180 Kilometern in drei Stunden. Blériot flog die höchste Fluggeschwindigkeit über die 10-Kilometer-Strecke mit 76,95 km/h. Hubert Latham erreichte auf einer „Antoinette“ des Flugzeugkonstrukteurs Levasseur mit 155 m die größte Flughöhe.

1910 gelang dem französischen Ingenieur Henri Fabre mit dem von ihm konstruierten Canard Hydravion der erste Flug mit einem Wasserflugzeug.

Monocoque

Früher Aéroplane A.Deperdussin

Im Jahr 1912 erfindet Louis Béchereau die Monocoque-Bauweise für Flugzeuge. Die Rümpfe anderer Flugzeuge bestanden aus einem mit lackiertem Stoff überzogenen Gerüst. Das von Béchereau entworfene Deperdussin-Monocoque-Rennflugzeug besaß jedoch einen Stromlinienrumpf aus einer Holzschale ohne inneres Gerüst. Neu war auch die „DEP“-Steuerung, bei der auf dem Steuerknüppel für die Nickbewegung ein Steuerrad für die Rollbewegung saß, ein Prinzip, das heute noch vielfach Verwendung findet. Als Triebwerk besaß das Flugzeug einen speziellen Flugzeugmotor, den Gnôme-Umlaufmotor. Die Deperdussin Monocoques waren die schnellsten Flugzeuge ihrer Zeit.

Ein wesentlicher technischer Durchbruch gelang kurz vor dem Ersten Weltkrieg dem russischen Konstrukteur und Piloten Igor Iwanowitsch Sikorski, der später eher als Hersteller von Flugbooten und Konstrukteur von Hubschraubern in den USA bekannt wurde. Von 1913 bis 1914 bewies er mit den ersten von ihm konstruierten „Großflugzeugen“, dem zweimotorigen Grand Baltiski, dem viermotorigen Russki Witjas und dessen Nachfolger, dem viermotorigen Ilja Muromez, dass solche großen Flugzeuge sicher und stabil fliegen können, selbst wenn ein oder zwei Motoren abgestellt sind oder ausfallen.

Der Erste Weltkrieg

Während des Ersten Weltkrieges erkannten die Militärs den Wert der Luftaufklärung. Zugleich wollten sie den Gegner an einer Aufklärung hindern. Das Flugzeug entwickelte sich zur Waffe, und die Grundlagen des Luftkrieges mit Propellerflugzeugen wurden gelegt. Die zu Anfang des Krieges noch weit verbreiteten Flugzeuge mit Druckpropeller wurden durch die wendigeren und schnelleren Maschinen mit Zugpropeller ersetzt.[20] Hierzu trug bei, dass die Synchronisierung der Bordmaschinengewehre mit dem Propeller über ein Unterbrechergetriebe entwickelt wurde, so dass man mit der starren Bewaffnung durch den eigenen Propellerkreis schießen konnte. Auf diese Weise konnte der Pilot mit dem Flugzeug den Gegner anvisieren, was den Einsatz von Maschinengewehren im Luftkampf wesentlich erfolgreicher machte. Aus den Flugzeugen wurden Granaten, Flechettes und darauf folgend erste spezielle Spreng- und Brandbomben abgeworfen. Dabei sollten zunächst die Soldaten in den feindlichen Linien und später auch Fabriken und Städte getroffen werden.

Während des Ersten Weltkrieges wurde eine Flugzeugindustrie aus dem Boden gestampft, es entstanden die ersten Flugplätze, und die Technik des Flugfunks wurde entwickelt. Durch den Einsatz von neuen Metallen (Aluminium) wurden Flugzeugmotoren immer leistungsfähiger.

Im Jahr 1915 erprobte Hugo Junkers das erste Ganzmetallflugzeug der Welt, die Junkers J 1. Hugo Junkers baute 1919 auch das erste Ganzmetall-Verkehrsflugzeug der Welt, die Junkers F 13, deren Konstruktionsprinzipien richtungweisend für folgende Flugzeuggenerationen wurden.

Zwischenkriegszeit

Während des Ersten Weltkrieges war die Flugzeugproduktion stark angekurbelt worden. Nach diesem Krieg mussten die Flugzeughersteller ums Überleben kämpfen, da nicht mehr so viele Militärflugzeuge gebraucht wurden. Gerade in Europa gingen viele der ehemaligen Flugzeughersteller in Konkurs, wenn es ihnen nicht gelang, ihre Produktion auf zivile Güter umzustellen. In den USA waren Kampfflugzeuge geradezu zu Schleuderpreisen zu kaufen. Ehemalige Piloten von Kampfflugzeugen mussten sich eine neue Beschäftigung suchen.

Kommerzielle zivile Luftfahrt

Sowohl in den USA als auch in Europa entstanden viele neue zivile Dienste und Luftfahrtgesellschaften, wie z. B. die Luft Hansa 1926. Die bekanntesten Passagierflugzeuge dieser Zeit waren die Junkers F 13, die Junkers G 38, die Dornier Wal, die Handley Page H.P.42 und die Junkers Ju 52/3m.

Langstreckenflüge

Curtiss NC-4

Die große Herausforderung nach dem Krieg waren Langstreckenflüge, vor allem die Überquerung des Atlantiks. Diese Aufgabe kostete einige Menschenleben, bis eines von drei in Neufundland gestarteten Curtiss-Flugbooten der US-Navy, die Curtiss NC-4, nach 11 Tagen am 27. Mai 1919 in Lissabon landete.

Die Vickers Vimy von Alcock und Brown nach der Bruchlandung in Clifden
Fieseler „Storch“ (ab 1936)

In der Zeit vom 14. bis 15. Juni 1919 gelingt den britischen Fliegern Captain John Alcock und Lieutenant Arthur Whitten Brown der erste Nonstop-Flug über den Atlantik von West nach Ost. Ihr Flugzeug war ein zweimotoriger modifizierter Bomber Typ Vickers Vimy IV mit offenem Cockpit.

Charles Lindbergh gelingt zwischen 20. und 21. Mai 1927 mit seinem Flugzeug „Ryan NYP“ Spirit of St. Louis der erste Nonstop-Alleinflug von New York nach Paris über den Atlantik. Er gewinnt damit den seit 1919 ausgelobten Orteig Prize. Allein dieser Überflug brachte der US-amerikanischen Flugzeugindustrie und den US-amerikanischen Fluggesellschaften einen deutlichen Aufschwung. Eine von Daniel Guggenheim finanzierte Reise Lindberghs durch alle US-Bundesstaaten führte im ganzen Land zum Bau von Flugplätzen. Am 12. April 1928 gelingt der Transatlantikflug von Ost (Baldonnel in Irland) nach West (Greenly Island – Neufundland) durch Hermann Köhl, James Fitzmaurice und Ehrenfried Günther Freiherr von Hünefeld mit einer modifizierten Junkers W 33.

Flugboote
Ab Ende der 20er Jahre beginnt das Zeitalter der großen Flugboote, deren bekannteste Vertreter die Dornier Do X und Boeing 314 waren. Haupteinsatzbereich waren weite Transatlantik- und Pazifikflüge.

Mit der Flugbootkombination Short Mayo war ab 1937 in England für Transatlantikflüge experimentiert worden. Der Sinn der Short-Mayo-Kombination war, mit einem leicht betankten Flugboot, in diesem Fall einer Short-S.21, ein schwerbeladenes Wasserflugzeug (eine Short-S.20) auf Flughöhe zu tragen und dort auszuklinken. Diese Kombination sollte das Verhältnis zwischen Leistung, Nutzlast und Treibstoff optimieren.

Katapultflugzeuge
Als Pionier im Katapultflugzeugbau gilt Ernst Heinkel, der 1925 eine Abflugbahn (noch kein Katapult) mit Flugzeug auf das japanische Schlachtschiff Nagato aufsetzte und erfolgreich persönlich in Dienst nahm.

Auf wenigen großen Passagierschiffen wie der Bremen wurden mit dem Aufkommen der Katapulttechnik Katapultflugzeuge eingesetzt, die mittels eines Dampfkatapults gestartet wurden. Die Flugzeuge dienten meist zur schnellen Postbeförderung, wie die Heinkel HE 12 und die Junkers Ju 46. Im militärischen Bereich wurden Katapultflugzeuge hauptsächlich für die Luftaufklärung eingesetzt. Kleine Maschinen, wie die Arado Ar 196, wurden von großen Kriegsschiffen aus eingesetzt und große Katapultflugzeuge, wie die Dornier Do 26, wurden in den 1930er Jahren von der Lufthansa für den Transatlantik-Luftpostverkehr von Flugstützpunktschiffen aus eingesetzt und im Zweiten Weltkrieg als Transportflugzeuge und See-Fernaufklärer.

Höhenflugzeuge
Bereits ab 1937 begann die deutsche Luftwaffe mit dem Bau von Höhenflugzeugen, diese waren mit Druckkabinen ausgestattet und erreichten Höhen zwischen 12.000 und 15.000 m. Die bekanntesten Vertreter waren die Junkers EF 61, später die Henschel Hs 130 und die Junkers Ju 388. Sie dienten als Höhenaufklärer bzw. Höhenbomber, allerdings wurden sie nur in wenigen Exemplaren gebaut. Als erstes Passagierflugzeug mit einer Druckkabine erlaubte der Boeing 307 Stratoliner einen Flug über dem Wetter und damit eine wesentliche Komfortsteigerung für die Passagiere.

1939 bis 1945

Am 20. Juni 1939 startet mit der Heinkel He 176 das erste Versuchsflugzeug mit regelbarem Flüssigkeitsraketenantrieb. Dieses Flugzeug besitzt auch als erstes als Rettungsmittel eine abtrennbare Cockpitkapsel mit Bremsschirm. Der Pilot musste sich im Notfall dann allerdings von der Kapsel befreien und mit dem Fallschirm abspringen. Das Flugzeug erreichte eine maximale Geschwindigkeit von ca. 750 km/h.

Die Heinkel He 178 war das erste Flugzeug der Welt, das von einem Turbinen-Luftstrahltriebwerk angetrieben wurde. Der Erstflug erfolgte am 27. August 1939.

Durch die Luftschlacht um England geriet das Jagdflugzeug zunächst in den Mittelpunkt. Die beiden herausstechenden Typen dieser Zeit waren die Messerschmitt Bf 109 und die Supermarine Spitfire, die durch Verbesserungen der Aerodynamik und auch der Leistungsfähigkeit der Motoren im Laufe ihrer Entwicklung wesentlich in ihrer Leistungsfähigkeit gesteigert wurden.

Die Heinkel He 280 war das erste zweistrahlige Flugzeug der Welt; es besaß zwei Turbostrahltriebwerke. Es war auch das erste Flugzeug, das mit einem Schleudersitz ausgerüstet war. Der Erstflug fand am 2. April 1941 statt. Seinen ersten Einsatz als Rettungsgerät hatte der Schleudersitz wohl am 13. Januar 1943, als sich der Pilot aus einer He 280 katapultieren musste, die wegen Vereisung flugunfähig geworden war.

Die Alliierten setzten für den strategischen Luftkrieg große viermotorige Bombenflugzeuge ein. Da Angriffe wegen der deutschen Luftverteidigung oft nachts geflogen werden mussten, hielt die Avionik in den Luftkrieg Einzug. Geräte zu Positionsbestimmung, wie das GEE-Verfahren, Radar zur Navigation und zur Nachtjagd und auch Funkgeräte zogen in Einsatz ein. Der Kampf führte zu immer größeren Flughöhen und Geschwindigkeiten. Um die Bombenflugzeuge wirksam schützen zu können, wurden Jagdflugzeuge mit großer Reichweite entwickelt, etwa die North American P-51.

Die Arado Ar 234B-2 von 1944 war der erste vierstrahlige Bomber mit einem Autopiloten (PDS). Kurz vor Kriegsende entstand der zweistrahlige Nurflügler Horten H IX. Die Außenhülle war mit einer Mischung aus Kohlenstaub und Leim beschichtet, um Radarstrahlen zu absorbieren.

Mit der Messerschmitt Me 163 wurde Mitte 1944 ein Raketengleiter, ausgehend von einem Segelflugzeug, zur Einsatzreife entwickelt. Als Objektschutzjäger eingesetzt, bestach das Flugzeug durch seine Steigleistung, war jedoch aufgrund der Einsatzumstände praktisch wirkungslos.

Während dieser Zeit steigerte sich die Fluggeschwindigkeit bis in den transsonischen Bereich. Umfangreiche Forschungsprojekte, insbesondere auf deutscher Seite, führten zu grundlegenden Entdeckungen der in der Hochgeschwindigkeitsaerodynamik, etwa die Anwendung der Tragflächenpfeilung oder die Entdeckung der Flächenregel. Produkt dieser Bemühungen war der schwere Strahlbomber Junkers Ju 287 mit negativer Pfeilung der Tragflächen und Anwendung der Flächenregel.

Die Japaner errangen mit ihrer leichten und wendigen Mitsubishi Zero Sen im Pazifik zunächst herausragende Erfolge. Erst spätere Entwicklungen der USA erlaubten es, gegen den Gegner mit Erfolgsaussicht vorzugehen. Als die Lage Ende 1944 für Japan immer aussichtsloser wurde, ersannen sie Kamikaze-Flugzeuge, deren Piloten das voll Sprengstoff gepackte Flugzeug selbstmörderisch auf alliierte Schiffe lenkten.

1945 bis heute

1947 durchbrach die Bell X-1 als erstes Flugzeug offiziell die Schallmauer, inoffiziell war das nach Berichten deutscher Kampfflieger aus Versehen bereits 1945 mit einer Messerschmitt Me 262 gelungen. Die X-1 war ein Experimentalflugzeug mit Raketenantrieb, welches von einer B-29 in ca. 10 km Höhe getragen und dort ausgeklinkt wurde, woraufhin der Raketenantrieb zündete und das Flugzeug die Schallmauer durchbrach.

Mit dem Kalten Krieg und dem Koreakrieg (1950–1953) begann das Wettrüsten der Strahlflugzeuge. Am 8. November 1950 gelang der weltweit erste Sieg in einem Luftkampf zwischen Strahlflugzeugen, bei dem eine MiG-15 von einer Lockheed P-80 abgeschossen wurde. Grundsätzlich waren die P-80 und Republic F-84 den sowjetischen Jets jedoch nicht gewachsen und wurden deshalb bald von der F-86 Sabre abgelöst.

Mit der Inbetriebnahme der britischen De Havilland DH.106 Comet bei der Fluggesellschaft BOAC begann 1952 das Zeitalter der Strahlturbinen auch für Verkehrsflugzeuge. Allerdings wurden die wechselnden Druck-Belastungen nicht ausreichend berücksichtigt – der Verkehr fand jetzt in größeren Höhen statt und die Lastwechsel der Druckkabine führten zu Haarrissen im Rumpf. Als 1954 zwei Maschinen dieses Typs abstürzten, musste mit großem Aufwand nach den Ursachen geforscht werden; es handelte sich um Materialermüdung. Diese Forschung kam allen Konstrukteuren zugute. Mit der Tupolew Tu-104 etablierte währenddessen die Sowjetunion ab 1956 erfolgreiche Liniendienste. Die Comet nahm mit einem weitgehend neu konstruierten Rumpf als DH.106 Comet 4B im Herbst 1958 ihren Dienst wieder auf, allerdings nur kurz vor der Boeing 707, welche eine etwas höhere Reichweite hatte und mehr als doppelt so viele Passagiere befördern konnte. Eine verbesserte Wirtschaftlichkeit brachte ab 1962 der Einsatz der leistungsstärkeren und verbrauchsärmeren Mantelstromtriebwerke (engl. Turbofan). Anfang der 1970er Jahre begann der Einsatz von Großraumpassagierflugzeugen wie zum Beispiel der Boeing 747 „Jumbo-Jet“ und der McDonnell Douglas DC-10, später kamen Airbus-Baureihen dazu; größtes Passagierflugzeug ist heute der Airbus A380.

Mit Beginn der 1950er Jahre begann die Entwicklung weitreichender strategischer Bomber, die auch Atombomben tragen konnten. Die bekanntesten Vertreter waren die Boeing B-52, Convair B-58, Mjassischtschew M-4, die Tupolew Tu-95 und die Avro Vulcan. Die B-58 war das erste Kampfflugzeug mit einem zentralen Bordrechner, der die zahlreichen Baugruppen zusammenfasste.

1955 rüstete die französische Firma Sud Aviation ihren Hubschrauber Alouette II mit einer 250-kW-Turboméca-Artouste-Wellenturbine aus und baute damit den ersten Hubschrauber mit Gasturbinenantrieb.

Mit dem Hawker Siddeley Harrier begann die Serienherstellung senkrechtstartender VTOL-Flugzeuge ab 1966. Allerdings kamen fast alle anderen VTOL-Flugzeuge nicht über das Prototypenstadium hinaus. Die USA entwickeln zurzeit (2005) mit dem Lockheed Martin F-35 eine neue Generation von V/STOL-Flugzeugen.

Mit dem Vietnamkrieg trafen erneut sowjetische und amerikanische Flugzeuge aufeinander. Dabei erwies sich die MIG 21 gegenüber der amerikanischen McDonnell F-4 Phantom II in vielen Fällen als überlegen. Die Boeing B-52 wurde zu großflächigen Bombardements eingesetzt. Der umfangreiche Einsatz von Hubschraubern, wie der CH-47 Chinook und Bell UH-1, wurde immer wichtiger.

Mit dem Jungfernflug der Tupolew Tu-144 am 31. Dezember 1968 und der Concorde am 2. März 1969 begann die Episode des Überschall-Passagierluftverkehrs. Die Amerikaner hatten bei konventionellen zivilen, mit Turbinenstrahltriebwerken angetriebenen Passagierflugzeugen eine Monopolstellung erreicht. Diese wollten Engländer und Franzosen durch den Bau der Concorde durchbrechen. Der gestiegene Ölpreis (er vervielfachte sich während der Ölkrisen 1973 und 1979/80) machte die Concorde unwirtschaftlich. Der enorme Kraftstoffverbrauch galt als ökologisch bedenklich. British Airways und Air France – damals beide staatliche Fluggesellschaften – wurden von ihren Regierungen zum Kauf der Concorde genötigt.[21] Der letzte Flug einer Concorde fand am 26. November 2003 statt.

Die Lockheed F-117A Nighthawk der United States Air Force war das weltweit erste einsatzbereite Flugzeug, das sich die Tarnkappentechnik konsequent zunutze machte. Die erste F-117A wurde 1982 ausgeliefert. Während des Baus der F-117 wurde sie von den amerikanischen Ingenieuren als „hoffnungsloser“ Fall bezeichnet, da sie vermuteten, dass das Flugzeug aufgrund seiner Form nie in der Lage sein würde zu fliegen. Bevor sie einen offiziellen Namen bekamen, nannten die Ingenieure und Testpiloten die unkonventionellen Flugzeuge, die während des Tages versteckt wurden, um Entdeckung durch sowjetische Satelliten zu verhindern, „Cockroaches“ (Kakerlaken). Diese Bezeichnung wird noch immer häufig benutzt, weil diese Flugzeuge nach Meinung vieler zu den hässlichsten gehören, die bislang gebaut wurden. Das Flugzeug wird auch „Wobblin Goblin“ genannt,[22] speziell wegen ihrer unruhigen Flugeigenschaften bei Luftbetankungen. Es lässt sich auf Grund seiner instabilen aerodynamischen Eigenschaften nur mit Computerunterstützung fliegen.

Mit dem Raketenflugzeug SpaceShipOne gelang am 21. Juni 2004 der erste privat finanzierte suborbitale Raumflug über 100 km Höhe. Die Maschine wurde von der Firma Scaled Composites im Rahmen des Projekts Tier One entwickelt, um den Wettbewerb Ansari X-Prize der X-Prize Foundation für sich entscheiden zu können. Dieser stellte zehn Millionen Dollar für denjenigen in Aussicht, der als Erster mit einem Fluggerät neben dem Piloten zwei Personen oder entsprechenden Ballast in eine Höhe von mehr als 100 Kilometer befördert und dies mit demselben Fluggerät innerhalb von 14 Tagen wiederholt.

Laufende Forschung und Zukunft

Um der Thematik der notwendigen Treibstoffeinsparung zu begegnen, wird häufig der mögliche Einsatz von Nurflüglern diskutiert. Damit soll auch die Lärmbelastung gesenkt werden. Ein realistischer Forschungsschwerpunkt ist der erweiterte Einsatz von Leichtbauwerkstoffen wie CFK und bedingt GLARE. Auch werden neue Triebwerke mit Wärmerückgewinnung über Wärmeübertrager entwickelt. Die Nutzung aerodynamischer Erkenntnisse bei z. B. den Winglets oder den Gurney Flaps werden untersucht. Im militärischen Bereich setzen sich immer mehr die Drohnen durch und mit der Boeing AL-1 werden ganz neue Waffensysteme auf Laser-Basis erprobt.

Rekorde

Fluggeschwindigkeit

Die folgende Tabelle gibt einen Überblick über die von Flugzeugen erreichten Geschwindigkeitsrekorde:

JahrGeschw.PilotNationalitätFlugzeug
190356 km/hOrville WrightUSAFlyer 1
1910106 km/hLeon MoraneFrankreichBlériot XI
1913204 km/hMaurice PrevostFrankreichDeperdussin-Monocoque
1923417 km/hHarold J. BrowUSACurtiss R2C-1
1934709 km/hFrancesco AgelloItalienMacchi-Castoldi M.C.72 (Schwimmerflugzeug)
1939755 km/hFritz WendelDeutschlandMesserschmitt Me 209 V1
19411.004 km/hHeini DittmarDeutschlandMesserschmitt Me 163 (Raketenjäger)
19471.127 km/h
Mach 1,015
Charles Elwood YeagerUSABell X-1
19512.028 km/hBill BridgemanUSADouglas Skyrocket
19563.058 km/hFrank EverestUSABell 52 X-2 (Rakete)
19615.798 km/hRobert WhiteUSANorth American X-15 (Raketenflugzeug)
19653.750 km/hW. DanielUSALockheed SR-71 Blackbird (Düsenflugzeug)
19667.214 km/hWilliam Joseph KnightUSANorth American X-15 (Raketenflugzeug)
200411.265 km/hunbemanntUSABoeing X-43A (Staustrahltriebwerk)

Größe

Antonow An-225 im April 2004

Als größtes Flugzeug überhaupt gilt das Frachtflugzeug Antonow An-225 „Mrija“, von dem nur ein einziges Exemplar fertiggestellt und am 27. Februar 2022 zerstört wurde. Es übertraf alle anderen Flugzeuge an Länge, Startgewicht und Gesamtschub. Der Airbus A380 ist nach Kapazität, Spannweite, Höhe und Startgewicht das größte Passagierflugzeug der Welt, aber nicht das längste – das ist die Boeing 747-8 mit 76,30 m. Die größte Spannweite aller Flugzeuge hat das für Raketenstarts vorgesehene Scaled Composites Stratolaunch.

Das leistungsfähigste Einzeltriebwerk besitzt die zweistrahlige Boeing 777-300 mit 512 kN Schub. Die größte Reichweite ist nur schwer festlegbar, da diese bei jedem Flugzeug durch Einbau zusätzlicher Tanks (im Extremfall bis zum maximalen Startgewicht) erhöht werden kann; die größte Reichweite in Serienversion bietet die Boeing 777-200LR mit 17.446 km. Die größte jemals ohne Nachtanken erzielte Reichweite erreichte die Voyager mit 42.212 km.

Vergleich von Großflugzeugen:
Airbus A380, Antonow An-225, Boeing 747-8I, Hughes H-4, Scaled Composites Stratolaunch
TypLängeSpannweiteHöhemax. StartgewichtReichweitemax. PassagierzahlSchub
A380-80072,7 m79,8 m24,1 m560 t15.200 km8534×311 kN
= 1244 kN
A340-60075,3 m63,5 m17,3 m368 t13.900 km4194×267 kN
= 1088 kN
B747-8i76,3 m68,5 m19,4 m448 t14.815 km6054×296 kN
= 1184 kN
B777-300ER73,9 m64,8 m18,6 m352 t14.600 km5502×512 kN
= 1024 kN
Hughes H-466,7 m97,5 m25,1 m182 t4.800 km7508×21,3 kN
= 171 kN1
Scaled Composites Stratolaunch72,5 m117,3 m15,2 m590 t10.700 m6×252 kN
= 1512 kN
Antonow An-22584,0 m88,4 m18,1 m600 t15.400 kmFrachtflugzeug6×230 kN
= 1380 kN
1 
Zu Vergleichszwecken erfolgt eine Umrechnung der Leistung in Schubkraft anhand der Angabe von 8×2240 kW = 17.920 kW und der projektierten Höchstgeschwindigkeit von 378 km/h (105 m/s). Dies entspricht nicht der erzielten Höchstgeschwindigkeit.

Siehe auch

Literatur

  • Ludwig Bölkow (Hrsg.): Ein Jahrhundert Flugzeuge. Geschichte und Technik des Fliegens. VDI, Düsseldorf 1990, ISBN 3-18-400816-9.
  • R. G. Grant: Fliegen. Die Geschichte der Luftfahrt. Dorling Kindersley, Starnberg 2003, ISBN 3-8310-0474-9.
  • Ernst Götsch: Einführung in die Flugzeugtechnik. Deutscher Fachverlag, Frankfurt am Main 1971, ISBN 3-87234-041-7.
  • Ernst Götsch: Luftfahrzeugtechnik. Einführung, Grundlagen, Luftfahrzeugkunde. Motorbuchverlag, Stuttgart 2003, ISBN 3-613-02006-8.
  • Oskar Höfling: Physik, Band II, Teil 1, Mechanik – Wärme, 15. Auflage. Dümmlers, Bonn 1994, ISBN 3-427-41145-1.
  • Knaurs Lexikon der Naturwissenschaften. Droemersche Verlagsanstalt, Th. Knaur Nachf., München und Zürich 1969.
  • Wie funktioniert das? Meyers erklärte Technik, Band 1. Bibliographisches Institut, Mannheim und Zürich 1963.
Commons: Flugzeuge – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Flugzeug – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Flieger. duden.de
  2. International Civil Aviation Organization (Hrsg.): Annex 2 to the Convention on International Civil Aviation. Rules of the Air. 10. Auflage. November 2016, S. 1–2 (bazl.admin.ch [PDF; 878 kB; abgerufen am 12. Juli 2017]).
  3. Das Neue Universallexikon. Bertelsmann Lexikon Verlag, 2007, ISBN 978-3-577-10298-8, S. 284.
  4. Heinz A. F. Schmidt: Lexikon der Luftfahrt. Motorbuch Verlag, 1972, ISBN 3-87943-202-3.
  5. Wilfried Kopenhagen u.a: transpress Lexikon: Luftfahrt. 4. überarbeitete Auflage. Transpress-Verlag, Berlin 1979, S. 255.
  6. Kathrin Kunkel-Razum, Birgit Eickhoff: Duden. Standardwörterbuch Deutsch als Fremdsprache. Hrsg.: Bibliographisches Institut. 1. Auflage. Dudenverlag, Mannheim 2002 („Flugzeug […]: Luftfahrzeug mit horizontal an den Seiten seines Rumpfes angebrachten Tragflächen.“).
  7. Flugzeug. In: Digitales Wörterbuch der deutschen Sprache. Abgerufen am 30. Mai 2011 „Luftfahrzeug, das meist aus einem mit einem Fahrwerk versehenen Rumpf mit horizontal angebrachten Tragflügeln und einem Leitwerk besteht und dessen Flugfähigkeit durch einen dynamischen Auftrieb zustande kommt“
  8. David Anderson, Scott Eberhardt: Understanding Flight. 2. Auflage. McGraw-Hill, New York u. a. 2009, ISBN 978-0-07-162696-5 (englisch, A Physical Description of Flight Buch-Auszug [PDF]).
  9. Flugwerk/Zelle gleichbedeutend verwendet, s. Tabelle S.5 (PDF; 59 kB)
  10. mdpi.com
  11. a b boeing.com
  12. a b FAST45 magazine vom Dezember 2009 (Memento vom 26. Dezember 2012 im Internet Archive)
  13. a b boeing.com
  14. auch weitere Typen anderer Hersteller ab Page 69768
  15. Jochim Scheiderer: Angewandte Flugleistung – Eine Einführung in die operationelle Flugleistung vom Start bis zur Landung, Springer-Verlag, 2008, ISBN 978-3-540-72722-4, doi:10.1007/978-3-540-72724-8.
  16. Gunnar Haase: Alternative Varianten mechanischer Flugsteuerungssysteme zur Reduzierung von Gewicht und Fertigungsaufwand. Suedwestdeutscher Verlag fuer Hochschulschriften, 2009, ISBN 978-3-8381-0414-0., Kapitel 2 Stand der Technik
  17. Dieter Scholz (2014): Flugsteuerung (PDF; 13 MB) Skript
  18. Wolfgang Leonhardt: Karl Jathos erster Motorflug 1903. Books on Demand, Norderstedt 2002, ISBN 3-8311-3499-5
  19. Telegram from Orville Wright in Kitty Hawk, North Carolina, to His Father Announcing Four Successful Flights, 1903 December 17. In: World Digital Library. 17. Dezember 1903, abgerufen am 21. Juli 2013.
  20. Die Geschichte des Jagdflugzeuges (Memento vom 30. März 2010 im Internet Archive)
  21. Das Aus für die Concorde, faz.net
  22. to wobble = flattern, schlenkern, schwabbeln

Auf dieser Seite verwendete Medien

Giant planes comparison - Updated.svg
Autor/Urheber: Clem Tillier (clem AT tillier.net), Lizenz: CC BY-SA 2.5
Vergleich zwischen den fünf Großflugzeugen Hughes H-4 (gelb), Antonow An-225 (grün), Boeing 747 (blau), Airbus A380 (rot) und Scaled Composites Stratolaunch (pink).
Me109 G-6 D-FMBB 1.jpg
Autor/Urheber: Kogo, Lizenz: CC BY-SA 2.0
A Hispano Aviación HA-1112 (c/n 156 C.4K-87 (D-FMBB), "FM+BB"), a license-built Messerschmitt Bf 109 G-2. Rebuilt by the EADS/Messerschmitt Foundation, Germany with a Daimler-Benz DB 605 engine as a G-6. The paint scheme is missing the Swastika, due to current German laws.
Vulcan.filton.arp.750pix.jpg
  • Royal Air Force Avro 698 Vulcan B.1, date unknown.
  • Photographed by Adrian Pingstone (early 60's?) and released to the public domain.
Gossamer cabin.jpg
Mojave Desert: Cabin of the MacCready Gossamer Albatross II, one of the human powered airplanes.
CLASS R-80 Bush Caddy under construction 01.JPG
Autor/Urheber: Ahunt, Lizenz: CC0
A CLASS R-80 Bush Caddy under construction at the CLASS factory in Les Cedres, Quebec, Canada
Usaf.u2.750pix.jpg
[Original description] An air-to-air left side view of a TR-1 tactical reconnaissance aircraft.
The U-2 Dragon Lady is considered the leader among manned intelligence, surveillance and reconnaissance systems. An aircraft such as this collected images over the Gulf Coast region last year after Hurricanes Katrina and Rita.
Picture prepared for Wikipedia by Adrian Pingstone in April 2003.
Piper PA-23 Apache esquema.jpg
Autor/Urheber: Fly-by-Owen, Lizenz: CC BY-SA 4.0
Esquema Piper Apache
Boeing B-52 STRATOFORTRESS.png
A 3-view line drawing of the Boeing B-52 Stratofortress.
Fairchild Republic A-10 Thunderbolt II - 32156159151.jpg
An A-10 Thunderbolt II, assigned to the 74th Fighter Squadron, Moody Air Force Base, GA, returns to mission after receiving fuel from a KC-135 Stratotanker, 340th Expeditionary Air Refueling Squadron, over the skies of Afghanistan in support of Operation Enduring Freedom, May 8, 2011.
Do-27.JPG
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0
Achsen-cessna2.svg
Autor/Urheber: Andreas 06 from original by André Huppertz (ErnstA in der Wikipedia auf Deutsch), Lizenz: CC BY-SA 3.0
Rotationachsen eines Flugzeug
Fisher FP-202 Koala D-MKOA fuselage.jpg
Autor/Urheber: El Grafo, Lizenz: CC BY-SA 3.0
Innenansicht des Rumpfes einer Fisher FP-202 Koala, aufgenommen auf dem Sonderlandeplatz Schmallenberg-Rennefeld
Giant planes comparison.svg
Autor/Urheber: Clem Tillier (clem AT tillier.net), Lizenz: CC BY-SA 2.5
Vergleich zwischen den fünf Großflugzeugen Hughes H-4 (gelb), Antonow An-225 (grün), Boeing 747 (blau), Airbus A380 (rot) und Scaled Composites Stratolaunch (pink).
SFF 002-1055526 Fairey Rotodyne.jpg
Autor/Urheber: Johannes Thinesen, Lizenz: CC BY-SA 2.5
The Fairey Rotodyne prototype, a combination of helicopter, autogyro and medium distance propeller airliner that never reached series production.
Canadian CF-18 Hornet escorts Soviet Tupolev Tu-95 in 1987.jpg
A Soviet Tu-95 aircraft (NATO reporting code: "Bear H") is being escorted by a Royal Canadian Air Force McDonnell Douglas CF-18 Hornet fighter in 1987.
An-225 front day V1.jpg
Portuguese and American workers tend to the Antonov An-225 Mriya, or "Dream", April 28 on the flightline at Lajes Field, Azores. The aircraft landed here to refuel and get serviced. Currently the world's largest aircraft, the An-225 was designed mainly to transport the Russian space shuttle and its components from a service area to a launch site.
Boeing B-52 dropping bombs.jpg
A U.S. Air Force Boeing B-52F-70-BW Stratofortress (s/n 57-0162, nicknamed "Casper The Friendly Ghost") from the 320th Bomb Wing dropping Mk 117 750 lb (340 kg) bombs over Vietnam. This aircraft was the first B-52F used to test conventional bombing in 1964, and later dropped the 50,000th bomb of the "Arc Light" campaign. B-52Fs could carry 51 bombs and served in Vietnam from June 1965 to April 1966 when they were replaced by "Big Belly" B-52Ds which could carry 108 bombs.
Classic aircraft over New York City 2008.jpg
P-51 Mustang, F-16 Fighting Falcon, F-15 Eagle, A-10 Thunderbolt II
PBY Catalina airtanker.jpg
Autor/Urheber: UnbekanntUnknown ; English Wikipedia, original upload 31 July 2005 by Fernando Rizo, Lizenz: CC BY-SA 1.0
A Consolidated PBY-6A Catalina (c/n 0220, U.S. Navy BuNo 64092, civil N6681C, CF-PIU, now N324FA). The aircraft is owned by the Commemorative Air Force, Minnesota Wing, at Duluth, Minnesota (USA) since 1999 and flown in its firebomber configuration, as it was used from 1979 to 1988.
Dornier Do 228 LGW D-ILKA Cockpit.jpg
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0


  • Aircraft: Dornier Do 228-100
  • Airline: Luftfahrtgesellschaft Walter mbH (LGW)
  • Registration: D-ILKA
  • Location: Dortmund Airport, Germany
North American F86-01.JPG
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0
Atlantis STS-112 landing.jpg
Space Shuttle Atlantis casts a needle-shaped shadow as it drops to the runway at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program.
Pitts-S1S-in-flight.jpg
Autor/Urheber: unknown, Lizenz: Attribution
Lockheed SR-71 Blackbird.jpg
Lockheed USAF SR-71 Blackbird des Dryden Flight Research Center (NASA 831) 1994 über den südlichen Gipfeln der Sierra Nevada nach der Luftbetankung. Die Streifen auf dem Rumpf und den Tragflächen sind Treibstoff. Die Tanks dichten erst bei hohen Geschwindigkeiten ab, wenn sich die Außenhaut durch die Reibung erhitzt hat. Sonst verliert die Blackbird immer Treibstoff. Abgebildet ist die Trainerversion (SR-71B) mit zweitem, aufgepropftem Cockpit für den Ausbilder. Die Klappe zur Luftbetankung ist offen und die Blackbird war bis dahin noch nicht schneller als der Schall.
Gyroflug SC01 Speed-Canard Niederrhein vr.jpg
Autor/Urheber: user:Stahlkocher, Lizenz: CC BY-SA 3.0
Gyroflug SC01 Speed-Canard Niederrhein vr
McDonnell Douglas F-A-18 Hornet 3-view line drawing.png
A 3-view line drawing of the McDonnell Douglas F/A-18 Hornet.
Aircraft fieseler Storch D-EVDB Airfield Bonn-Hangelar 20090822.JPG
Autor/Urheber: Sir James, Lizenz: CC BY-SA 3.0
Flugzeug Fi 156 Storch (D-EVDB) auf dem Flugplatz Hangelar bei Bonn
C-160 Transall.jpg
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0
Bundeswehr-Vorführung auf der ILA 2000 in Berlin
Flugzeug-ruder3.png
Autor/Urheber: André Huppertz, Lizenz: CC BY-SA 3.0
Flugzeug mit Rudern und Klappen
Albessard Triavion in flight L'Aéronautique March,1928.jpg
Albessard Triavion in flight. Photo from L'Aéronautique March,1928
Do 28D Luftwaffe (16531975459).jpg
Autor/Urheber: Rob Schleiffert from Holland, Lizenz: CC BY-SA 2.0
Dornier Do 28D-2 of the VIP-unit (FBS) at Koln-Bonn. Valkenburg, October 1987. The generals with only a couple of stars were transported by these lovely, slow machines. The best part was the sound they made!
G-BGMP Reims F172 @Cotswold Airport, July 2005.jpg
Cessna F172G (UK registration G-BGMP) at Kemble Airfield, Gloucestershire, England. Date of build 1965.
Lilienthalgleiter modelle.jpg
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0
Fokkerdri.jpg
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0
Pia.b747-367.ap-bfw.750pix.jpg
Boeing 747-300 of Pakistan International Airlines (AP-BFW) on the approach to London (Heathrow) Airport.
NC4nasagov.jpg
The NC-4, 1919
Leipzig Halle Airport European Air Transport Leipzig DHL Airbus A330-243F D-ALMA (DSC04687).jpg
Autor/Urheber: MarcelX42, Lizenz: CC BY-SA 4.0
Der für DHL betriebene Airbus A330-243F der Fluggesellschaft European Air Transport Leipzig mit dem Kennzeichen D-ALMA im Landeanflug auf die Landebahn 26L des Flughafens Leipzig/Halle. Das Flugzeug führte einen Flug von Los Angeles nach Leipzig/Halle durch.
North American X-15.jpg
The North American X-15 aircraft, ship #1 (56-6670), sits on the lakebed early in its illustrious career of high speed flight research. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC.
3 lifting bodys.jpg
The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10.The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970 and logged the highest and fastest records in the lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19, 1970. The X-24A was flown 28 times in the program that, like the HL-10, validated the concept that a Space Shuttle vehicle could be landed unpowered. The fastest speed achieved by the X-24A was 1,036 miles per hour (mph--Mach 1.6). Its maximum altitude was 71,400 feet. It was powered by an XLR-11 rocket engine with a maximum theoretical vacuum thrust of 8,480 pounds. The X-24A was later modified into the X-24B. The bulbous shape of the X-24A was converted into a "flying flatiron" shape with a rounded top, flat bottom, and double delta platform that ended in a pointed nose. The X-24B demonstrated that accurate unpowered reentry vehicle landings were operationally feasible. Top speed achieved by the X-24B was 1,164 mph and the highest altitude it reached was 74,130 feet. The vehicle is on display at the Air Force Museum, Wright-Patterson Air Force Base, Ohio. The pilot on the last powered flight of the X-24B was Bill Dana, who also flew the last X-15 flight about seven years earlier. The X-24A shape was later borrowed for the X-38 Crew Return Vehicle (CRV) technology demonstrator for the International Space Station. The X-24B is on public display at the Air Force Museum, Wright-Patterson AFB, Ohio. The M2-F3 was a modified version of the M2-F2. NASA pilots said the M2-F2 had lateral control problems, even though it had a stability augmentation control system. When the M2-F2 was rebuilt at Dryden and redesignated the M2-F3, it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The first flight of the M2-F3, with NASA pilot Bill Dana at the controls, was on June 2, 1970. It was a glide flight to evaluate changes in the vehicle's performance due to the modifications. The modified vehicle exhibited much better lateral stability and control characteristics than had the M2-F2. Over the next 26 missions, the M2-F3 reached a top speed of l,064 mph (Mach 1.6). Bill Dana was the pilot, and the high-speed flight took place on December 13, 1972. The highest altitude reached by the vehicle was 71,500 feet on December 21, 1972, the date of its last flight, with NASA pilot John Manke at the controls. A reaction jet control system, similar to thrusters used on orbiting spacecraft, was also installed to obtain research data about their effectiveness for vehicle control. As the M2-F3's portion of the lifting body program neared an end, it evaluated a rate command augmentation control system, and a side-arm control stick similar to side-arm controllers now used on many modern aircraft. The M2-F3 is now on display in the National Air and Space Museum, Washington, D. C. The HL-10 was delivered to the FRC by Northrop in January 1966. Its first flight was on December 22 of the same year. The pilot was Bruce Peterson. The HL-10 was flown 37 times and it set several program records. On February 18, 1970, Air Force test pilot Maj. Peter Hoag flew it to 1,228 mph (Mach 1.86), fastest speed of any of the lifting bodies. Nine days later, NASA's Bill Dana flew the HL-10 to 90,303 feet, the highest altitude reached by any of the lifting body vehicles. The HL-10 was also the first lifting body to fly supersonically--on May 9, 1969, with Manke at the controls. The HL-10 featured a flat bottom and rounded top--much like an airfoil--and it had a delta planform. In its final configuration, three vertical fins, two of them canted outwards from the body and a tall center fin, gave the craft directional control. A flush canopy blended into the smooth rounded nose. It was about 21 feet long, with a span of 13.6 feet. Its glide-flight weight was 6,473 lbs. and its maximum gross weight was over 10,000 lbs. Flights with the HL-10 contributed substantially to the decision to design the space shuttles without air-breathing engines that would have been used for landings. Its final flight was on July 17, 1970. The HL-10 is now on public display at Dryden.
Airbus A330neo F-WTTN 39.jpg
Autor/Urheber: New York-air, Lizenz: CC BY-SA 4.0
Paris Air Show 2019
Wasserflugzeug 01 KMJ.jpg
Autor/Urheber: KMJ, Lizenz: CC BY-SA 3.0
Wasserflugzeug
ControlSurfaces.gif
Autor/Urheber: Piotr Jaworski; PioM EN DE PL (Poznań/Poland), Lizenz: CC BY-SA 3.0
A): Querruder, B): Steuerknüppel, C): Höhenruder, D) Seitenruder.
Early Airplane Deperdussin.jpg
Autor/Urheber: Hmaag, Lizenz: CC0
Early Airplane Deperdussin
Airbus A380 overfly crop.jpg
Autor/Urheber: Roger Green from BEDFORD, UK, derivative work Lämpel, Lizenz: CC BY 2.0
Airbus A380 on slow fly past.
XB-35.jpg
A Northrop YB-35 (s/n 42-38323), circa in 1947.
Boeing B-52H Aspect ratio.jpg
The high aspect ratio wing of a United States Air Force B-52 bomber. DIEGO GARCIA, British Indian Island Territory -- A B-52H Stratofortress from the 96th Bomb Squadron, Barksdale Air Force Base, La., deployed to the 2nd Air Expeditionary Group, Naval Station Diego Garcia, drops away after air refueling.
Zaschka Human-Power Aircraft (1934).jpg
Autor/Urheber: Popular Science, Lizenz: CC BY-SA 3.0
Zaschka Muskelkraft-Flugzeug (1934), Engelbert Zaschka, Berlin, Deutschland
Kitty-hawk.jpg
Kitty Hawk, NC - Erster andauernder, gesteuerter Motorflug. Orville Wright am Steuer. Weite: 36,6 Meter. Dauer: 12 Sekunden.
LUNA UAV.jpg
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0
PC7.JPG
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0
Mitsubishi Zero-Yasukuni.jpg
Autor/Urheber: Paul Richter (Photographer), Lizenz: CC BY-SA 3.0

Mitsubishi Zero Model 52 (A6M5)

Location: Yasukuni Shrine Yushukan, Tokyo
Kraeftegleichgewicht-Flugzeug.png
Autor/Urheber: André Huppertz, Lizenz: CC BY-SA 3.0
Kräftegleichgewicht am Flugzeug im stationären Reiseflug
P-82 Twin Mustang.jpg
North American XP-82 "Twin Mustang" 44-83887 at Muroc Army Air Base, California. Official flight view of the "Twin Mustang", the Army Air Forces long-range fighter. Powered by two 12-cylinder Allison V-1710 engines, the P-82 is capable of a top speed of over 475 miles per hour. Rate of climb for the aircraft is over 5000 feet a minute. Standard armament is six .50 caliber machine guns, but the P-82 can also carry eight additional guns in a special center nacelle.
PWS 3 3-view Le Document aéronautique November,1927.png
PWS 3 3-view drawing from Le Document aéronautique November,1927
Jalbert-pat-draw.JPG
Zeichnungen des von JALBERT entwickelten "Matratzenschirms" (Multi-Cell-Wing) aus der Patentschrift US-Patent 3,285,546 vom 15.11.1966.
B747 turbofan dsc04626.jpg
Autor/Urheber: David Monniaux, Lizenz: CC BY-SA 3.0
Das Bild zeigt ein Pratt&Whitney JT9 Triebwerk montiert an einer Boeing 747.
Mikoyan mig29.jpg
Autor/Urheber: Jo Mitchell, Lizenz: CC BY-SA 3.0
A German Mikoyan-Gurevich MiG-29 at RAF Waddington (UK), 29 June 2002.
Tupolew Tu 144 Sinsheim.JPG
Autor/Urheber: Hans-Peter Scholz Ulenspiegel, Lizenz: CC BY-SA 2.0 de
Tupolew Tu-144 displayed at the Museum Sinsheim, Germany
Martin model 130 China Clipper class passenger-carrying flying.jpg
China Clipper (NC14716), Martin model 130, passenger-carrying flying boat, Figure 8.15 (mfr)
Boeing 307 Udvar Hazy.jpg
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0
Alcock-Brown-Clifden.jpg
Die Vickers Vimy von Alcock und Brown nach der Landung am 15. Juni 1919
Spitfire F XVIII SM845.jpg
Autor/Urheber: Kogo, Lizenz: GFDL
Spitfire LF XVIII SM845 (Historic Flying Ltd)
Fuselage Piper PA18.JPG
Autor/Urheber: Christoph von Blücher, Lizenz: CC BY-SA 3.0
Der Rumpf einer Piper Pa 18 während einer Grundüberholung ohne Bespannung.
SOFIA with open telescope doors.jpg
Stratospheric Observatory for Infrared Astronomy (NASA/DLR) with open telescope doors
A German-built telescope is exposed during a flight of NASA's Stratospheric Observatory for Infrared Astronomy 747SP on Dec. 18, 2009. The telescope doors were fully opened, allowing engineers to understand how air flows in and around the telescope.
FVK repair.JPG
Autor/Urheber: Christph von Blücher, Lizenz: CC BY-SA 3.0
The aileron of a Schleicher ASK 21 during a mending of a small damage. You can see the single layers very good.
Junkers-f13.jpg
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0
Bell X-1.jpg
The Bell Aircraft Corporation X-1-2 sits on the Rogers Dry Lakebed at Muroc Air Force Base, California in 1949. Some airplane characteristics are:

Fuselage length, feet 31.0 Wing span, feet 28.0 Horizontal tail width, feet 11.4

Vertical tail height, feet 8.02 (above center line of plane).
US Air Force F-117 Nighthawk.jpg
An F-117 Nighthawk from the 8th Expeditionary Fighter Squadron out of Holloman A.F.B., NM, flies over the Persian Gulf
Nord 2501 Noratlas OTT2013 D7N8775 BEA 1 002.jpg
Autor/Urheber: Stefan Krause, Germany, Lizenz: FAL

Dieses Foto wurde beim Oldtimer Fliegertreffen, 2013 am Flugfeld Hahnweide bei Kirchheim unter Teck aufgenommen. Es zeigt

eine Nord 2501 Noratlas bei der Flugvorführung
Sunny Myx.jpg
Ultraleichtflugzeug Sunny Sport
Nano Hummingbird.jpg
The Nano Hummingbird surveillance and reconnaissance aircraft developed by AeroVironment, Inc. under contract to the United States Government's Defense Advanced Research Projects Agency.