Flüssigkeit

Teilchenmodell einer Flüssigkeit

Eine Flüssigkeit ist Materie im flüssigen Aggregatzustand. Nach einer makroskopischen Definition handelt es sich um einen Stoff, der einer Formänderung so gut wie keinen, einer Volumenänderung hingegen einen recht großen Widerstand entgegensetzt (der Stoff ist nahezu inkompressibel). Nach einer mikroskopischen Definition ist eine Flüssigkeit ein Stoff, dessen Teilchen sich ständig nichtperiodisch bewegen sowie keiner Fernordnung, jedoch einer Nahordnung unterliegen und deren mittlere freie Weglänge in der Größenordnung des Teilchendurchmessers liegt.

Flüssigkeiten sind also volumenbeständig, formunbeständig und unterliegen einer ständigen Brownschen Bewegung. Der flüssige Zustand ist nicht allein stoffspezifisch, sondern hängt auch von äußeren Faktoren wie der Temperatur und dem Druck ab. Wechselt eine solche Flüssigkeit ihren Aggregatzustand, so spricht man von einer Phasenumwandlung, wobei der Begriff der Phase selbst einen Überbegriff zum Aggregatzustand darstellt.

Mit den Gasen werden die Flüssigkeiten zu den Fluiden zusammengefasst.

Makroskopische Beschreibung und Eigenschaften

Die temperaturabhängige Volumenausdehnung einer Flüssigkeit wird durch deren Volumenausdehnungskoeffizienten quantifiziert. Der Kompressionsmodul ist ein Maß für die adiabatische Volumenelastizität, das heißt für die „Zusammendrückbarkeit“ einer Flüssigkeit. In der Schwerelosigkeit beziehungsweise bei einer Abwesenheit äußerer Kräfte nehmen Flüssigkeiten aufgrund ihrer Oberflächenspannung eine kugelförmige Gestalt an, da diese Form die Oberfläche minimiert. Flüssigkeiten üben auf die Wand des Gefäßes, in dem sie sich befinden, einen hydrostatischen Druck aus, zum Beispiel den Wasserdruck. Ruhende Flüssigkeiten sind physikalisch hauptsächlich durch diesen Druck gekennzeichnet. Übt man von außen Druck auf Flüssigkeiten aus, so verteilt sich der Druck gleichmäßig in der ganzen Flüssigkeit. Je tiefer man einen Körper in eine Flüssigkeit taucht, desto größer wird der hydrostatische Druck auf den Körper. Dieser hängt allerdings nicht nur von der Tauchtiefe, sondern auch von der Dichte der Flüssigkeit ab. In strömenden Flüssigkeiten treten zusätzliche Größen auf, die durch die Fluiddynamik, ein Teilgebiet der Kontinuumsmechanik, beschrieben werden.

Der Widerstand gegen Formänderung, genauer die Viskosität, kann allerdings beliebig groß sein. Neben den für den allgemeinen Sprachgebrauch typischen Flüssigkeiten wie etwa Getränke, Geschirrspülmittel oder Flüssigbrennstoffe zählen folglich auch beispielsweise Knetmasse und extrem zähe Stoffe wie etwa Pech dazu. Amorphe Feststoffe wie Gläser werden oft irrtümlicherweise als Flüssigkeiten bezeichnet[1], weisen aber charakteristische Eigenschaften von beiden Aggregatszuständen auf, insofern gibt es oft keine klare Grenze, die Feststoffe von Flüssigkeiten unterscheidet.

Mikroskopische Beschreibung und Eigenschaften

Aufgrund der im Vergleich zum Festkörper fehlenden Translationsperiodizität und der ständigen Teilchenbewegung müssen Flüssigkeiten mit den Mitteln der statistischen Mechanik (z. B. klassische Dichtefunktionaltheorie) beschrieben werden. Wichtig sind hier die atomaren Verteilungsfunktionen. Viele Eigenschaften der Volumenphase von Flüssigkeiten lassen sich mittels Molekulardynamik- oder Monte-Carlo-Simulation berechnen.

Siehe auch

Literatur

  • M. P. Allen, D.J. Tildesly: Computer Simulation of Liquids. Oxford University Press, 1989, ISBN 0-19-855645-4
  • J. P. Hansen, I. R. Mcdonald: Theory of simple Liquids. Elsevier Academic Press, 2006, ISBN 978-0-12-370535-8

Weblinks

Wiktionary: Flüssigkeit – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Glass: Liquid or Solid -- Science vs. an Urban Legend. (Nicht mehr online verfügbar.) 9. April 2007, archiviert vom Original am 9. April 2007; abgerufen am 10. Oktober 2021.

Auf dieser Seite verwendete Medien

Teilchenmodell Flüssigkeit.svg
(c) Kaneiderdaniel, CC BY-SA 3.0
Teilchemodellbild eines flüssigen Stoffes