Delta II

Eine Delta II 7925 mit der Raumsonde Deep Impact auf der Startrampe
Die erste Stufe einer Delta II wird aufgerichtet. Die Rakete startete die Raumsonde ACE.
Montage der GEM-40-Feststoffbooster an die erste Stufe.
Die zweite Stufe kurz vor ihrem Einbau.
Auf diesem Bild wird deutlich, wie klein die zweite Stufe gegenüber der ersten und den Boostern der Delta II Heavy ist.
Die Nutzlastverkleidung einer Delta II Heavy wird um die Merkursonde MESSENGER montiert, die bereits auf der dritten Stufe sitzt.

Die Delta II war eine US-amerikanische Trägerrakete. Die von McDonnell Douglas entwickelte und später von Boeing IDS hergestellte Raketenfamilie war seit dem 26. November 1990 im Einsatz. Der letzte Start fand am 15. September 2018 statt.[1] Insgesamt absolvierte sie 155 Starts, welche bis auf einen Teilerfolg allesamt erfolgreich waren.

Entwicklung

Ursprünglich sollte das Space Shuttle alle amerikanischen Einwegträgerraketen ersetzen, nach der Challenger-Katastrophe wurde die Weiterentwicklung der Delta-Raketen jedoch wieder aufgenommen. Die Delta II ersetzte die vorher in aller Eile entwickelten Delta-6XXX-Raketen und hat gegenüber diesen eine leicht gesteigerte Nutzlastkapazität. Die Delta II wurde speziell auf die Nutzlastansprüche der GPS-Block-II-Satelliten zugeschnitten. Im alten numerischen Benennungssystem ist die Delta II die Delta 7XXX. Die Delta II wurde seit ihrem Erstflug 155 Mal verwendet. Außer für GPS-Satelliten wurde sie in den 1990er Jahren auch dazu verwendet, um Nachrichtensatelliten zu starten. Diese sind jedoch etwa seit Ende der 1990er Jahre normalerweise zu schwer für die Delta II. Bis August 2009 starteten weiterhin die GPS-Satelliten bis zum letzten Exemplar der GPS-IIR-M-Reihe mit Delta-II-Raketen. Außerdem wurden viele Forschungssatelliten und Raumsonden der NASA und einige andere Satelliten mit Delta-II-Raketen ins All gebracht.

Am 28. Oktober 2011 sollte der letzte Flug der Delta-II stattfinden, obwohl noch fünf Raketen (ohne Feststoffbooster) auf Lager waren. Schon zuvor war die Produktion der Delta II eingestellt worden.[2] Im Juli 2012 gab die NASA bekannt, die Delta II für drei weitere Starts einzusetzen, so dass nur noch zwei Raketen ohne geplante Mission auf Lager liegen. Die Feststoffbooster wurden der jeweiligen Version entsprechend neu produziert.[3]

Die Stufen der Delta II

Delta-Raketen sind Einwegraketen, das bedeutet, dass sie nur einmal fliegen. Sie bestehen aus den Komponenten:

  • Booster: Die Booster bestehen aus einem sehr leichten Kohlefasergehäuse (daher der Name Graphite-Epoxy Motor abk. GEM) zur Reduktion der Leermasse. Der Treibstoff ist „QDL-1“, ein Ammonium Perchlorate Composite Propellant (APCP) auf Basis von HTPB und Aluminium. Sie erhöhen den Schub während der anfänglichen zwei Minuten des Fluges. Die Standardausführung der Delta II hat neun GEM-40-Booster, die kleineren Versionen jedoch nur drei oder vier. Die Delta II Heavy verwendet hingegen neun der größeren GEM-46-Booster, die von der inzwischen nicht mehr gebauten Delta III übernommen wurden, der hier verwendete Treibstoff „QEM“, ebenfalls ein APCP mit ähnlicher Zusammensetzung[4]. Die GEM-40-Booster haben einen Durchmesser von 101,6 cm, die GEM-46 Booster 116,8 cm. Bei der Standard und der Heavy Version werden sechs Booster gleich beim Start und die restlichen drei im Flug kurz vor dem Ausbrennen der ersten sechs gezündet. Bei den kleineren Versionen mit drei oder vier Boostern zünden alle Booster bereits am Boden.
  • 1. Stufe: Eine Thor XLT (Extra Extended Long Tank) mit 2,44 m Durchmesser. Sie enthält RP-1- und Flüssigsauerstofftanks, die das von Rocketdyne gebaute RS-27A-Triebwerk mit Treibstoff versorgen. Die Thor leistet den größten Anteil des Geschwindigkeitsgewinnes während des Aufstiegs.
  • 2. Stufe: Eine im Verhältnis zur ersten Stufe kleine Delta K. Ihre druckgeförderten Treibstoff- und Oxidatortanks versorgen ein wiederzündbares Aerojet AJ10-Triebwerk mit hypergolem Treibstoff. Wenn der Flug in eine erdnahe Umlaufbahn geht, zündet diese Stufe lange, schaltet dann ab und fliegt ohne Antrieb mit dem Satelliten in einer elliptischen Parkbahn fast um die halbe Erde. Dann zündet sie im Apogäum der Parkbahn zum zweiten Mal (kürzer) und bringt sich und den Satelliten in eine nahezu kreisförmige Umlaufbahn in dieser Höhe. Dann setzt sie den Satelliten aus. Zum Schluss entfernt sie sich von dem Satelliten und zündet nach einem weiteren halben Erdumlauf zum dritten Mal. Diese Zündung entgegen der Flugrichtung dient einerseits dazu, die zweite Stufe in eine elliptische Umlaufbahn mit möglichst niedriger Erdnähe zu bringen, um die Stufe bald darauf verglühen zu lassen, andererseits soll der gesamte Treibstoff verbraucht werden, damit die Stufe nicht durch die Treibstoffreste explodieren kann. Geht der Flug jedoch in eine hohe Erdumlaufbahn oder eine Fluchtbahn zu einem anderen Planeten, zündet die zweite Stufe lange, schaltet ab, und fliegt ohne Antrieb mit dem Satelliten fast um die halbe Erde. Dann zündet sie zum zweiten Mal (kürzer), bis die für diesen Zeitpunkt geplante Fluggeschwindigkeit erreicht ist. Nun setzt sie die dritte Stufe mit der darauf sitzenden Nutzlast in der genau vorgegebenen räumlichen Ausrichtung aus. Die zweite Stufe enthält das Steuerungssystem der Delta II, eine Trägheitsnavigationsanlage und den Flugkontrollcomputer.
  • 3. Stufe: Ist ein optionaler Feststoffraketenmotor von ATK-Thiokol. Er erbringt den größten Teil der Geschwindigkeitsänderung zum Verlassen der Parkbahn, damit die Nutzlast höhere Erdumlaufbahnen oder Fluchtbahnen erreichen kann. Danach wird die dritte Stufe abgetrennt. Die Stufe ist spinstabilisiert und hat keine Steuerungssysteme zur Kurs- oder Lageveränderung. Die Stufe wird von der zweiten Stufe vor dem Aussetzen ausgerichtet.

Die Mitglieder der Raketenfamilie Delta II und Bezeichnungssystem

Die einzelnen Mitglieder der Raketenfamilie Delta II werden durch einen vierstelligen Zahlencode gekennzeichnet:

  • Die erste Ziffer: 7 bezeichnet die Serie 7000 der Delta. Diese Serie hat eine Extra-Extended-Long-Tank-Thor-Erststufe mit einem RS-27A-Triebwerk, mit einer längeren Schubdüse als das RS-27-Triebwerk der Delta 6000er Serie. Die längere Düse sorgt für eine höhere Expansion und einen höheren Schub in großer Höhe. Die GEM-40-Booster sind größer als die Castor-4A- und 4B-Booster der Delta-6000-Serie. Ihre Composite-Hülle ist außerdem leichter als die Stahlhülle der Castor-Booster.
  • Die zweite Ziffer: gibt die Anzahl der Booster an. Im Normalfall mit neun Boostern zünden sechs beim Abheben und drei nach einer Minute Flugzeit (wenn die ersten sechs bereits ausgebrannt sind). Bei Versionen mit nur drei oder vier Boostern zünden alle Booster beim Abheben.
  • Die dritte Ziffer: eine 2 bezeichnet die zweite Stufe Delta K mit einem Aerojet AJ10 Triebwerk. Das Triebwerk ist wiederzündbar.
  • Die vierte Ziffer: Steht für die dritte Stufe. 0 heißt keine dritte Stufe vorhanden, 5 steht für die PAM-D-Stufe (Payload Assist Module) mit einem Star-48-Feststoffmotor und 6 steht für einen Star-37-Feststoffmotor. Der Star-37-Motor ist kleiner und schwächer als der Star-48-Motor und wurde nur für den Start besonders leichter Raumsonden (und eines Satelliten verwendet), die seit dem Scheitern des stark auf maximale Kostenreduktion ausgelegten „Faster – Better – Cheaper“ Konzepts nicht mehr gebaut werden.
  • H: steht hinter dem vierstelligen Zahlencode, wenn es sich um eine Delta II Heavy handelt. Die Delta II Heavy verwendet anstelle der GEM-40-Booster größere GEM-46-Booster. Diese erhöhen das Startgewicht enorm, heben jedoch gleichzeitig die Nutzlast nur geringfügig an. Die Delta Heavy ist teurer als eine Standard Delta II und kommt nur dann zum Einsatz, wenn die Nutzlast für die normalen Delta II etwas zu schwer ist, sich aber ein größerer Raketentyp wirtschaftlich noch nicht lohnt. Es gibt Heavyversionen bisher (Juli 2009) nur mit neun Boostern, die Versionsbezeichnungen sind 7925H und 7920H.

Beispiele: Eine Delta 7925 hat die Thor-XLT-Erststufe mit RS-27A-Triebwerk, neun GEM-40-Booster, und der PAM als 3. Stufe. Eine Delta 7320 ist eine kleine Version mit drei Boostern und ohne 3. Stufe.[5]

Drei Nutzlastverkleidungen stehen momentan zur Auswahl. Ursprünglich gab es noch eine kleinere und eine andere sehr große Nutzlastverkleidung.

  • Die kleinste mit einem Durchmesser von 2,44 m (8 Fuß) hat denselben Durchmesser wie die Delta und wird nicht mehr verwendet. Mit ihr hatte die Rakete Delta II einen durchgehend konstanten Durchmesser. Für sie wurde -8 an den Namen gehängt.
  • Die nächstgrößere Nutzlastverkleidung hat einen Durchmesser von 2,9 m (9,5 Fuß). Sie besteht aus Aluminium. Als Standardnutzlastverkleidung wird sie am häufigsten verwendet. Für sie wird entweder -9.5 an den Namen gehängt oder der Anhang weggelassen.
  • Dann gibt es noch drei Nutzlastverkleidungen mit 3,05 m Durchmesser (10 Fuß). Zwei davon bestehen aus einem Verbundwerkstoff. Je nach Nutzlast gibt es sie als Normal- und Langversion. Für sie wird -10C bei der Kurzversion und -10L bei der Langversion an den Namen gehängt. Anstatt den beiden verschieden langen Nutzlastverkleidungen benutzte die Delta II zuerst eine von der Delta 6XXX übernommene 10-Fuß-Nutzlastverkleidung aus Metall. Diese wird heute nicht mehr verwendet. Für sie wurde einfach nur -10 an den Namen angehängt. Jede Version der Delta-II kann mit jeder der drei zur Verfügung stehenden Nutzlastverkleidungen ausgestattet werden.

Für Doppelstarts gibt es noch zwei unterschiedlich lange Doppelstartvorrichtungen in deren Innern ein Satellit Platz hat, während der andere auf ihr sitzt. Die Doppelstartvorrichtung befindet sich immer im Innern einer drei-Meter-Nutzlastverkleidung.

Ein Beispiel für eine vollständige Bezeichnung: Delta 7925H-9.5

Startrampen

Die Delta-II-Rakete befördert die beiden GRAIL-Sonden zu ihrer Mondmission

Delta-II-Raketen, die Nutzlasten in Umlaufbahnen mit Inklinationen zwischen 28° und 57° bringen, starteten in Cape Canaveral, vom Launch Complex 17, der zwei Startrampen, 17A und 17B besitzt. Jedoch war nur Startplatz 17B für die Delta II Heavy geeignet.[6] Delta-II-Raketen mit Nutzlasten, die Umlaufbahnen zwischen 56° und 104° Inklination erreichen mussten, starten vom Space Launch Complex 2W (SLC-2W) der Vandenberg Air Force Base in Kalifornien.

Einige bekannte Nutzlasten der Delta II

Startliste der Delta II

Weblinks

Commons: Delta II – Album mit Bildern, Videos und Audiodateien

Einzelnachweise

  1. Stephen Clark: Firefly’s commercial satellite launcher to use Delta 2 pad at Vandenberg. In: Spaceflight Now. 2. Mai 2018, abgerufen am 3. Mai 2018.
  2. Daniel Maurat, Klaus Donath: NPP erfolgreich gestartet – Ende einer Ära. raumfahrer.net, 28. Oktober 2011, abgerufen am 28. Oktober 2011: „Die Delta II wird nicht mehr produziert und zurzeit gibt es keine geplanten Starts mehr. Auch gibt es nur noch eingelagerte Bauteile für maximal fünf Raketen.“
  3. Justin Ray: NASA gives the Delta 2 rocket a new lease on life. Spaceflight Now, 16. Juli 2012, abgerufen am 17. Juli 2012 (englisch).
  4. Northrop Grumman Propulsion Products Catalog
  5. Gunter Krebs: Delta-7320 (Delta-II). In: Gunter's Space Page. Abgerufen am 31. Dezember 2022 (englisch).
  6. Launch Vehicle. NASA, 4. Oktober 2011, abgerufen am 28. Oktober 2011 (englisch): „SLC-17B is the only one of the two that can accommodate the larger Delta II 7925H.“

Auf dieser Seite verwendete Medien

Delta II 7920 on launch pad SLC-2W at VAFB with Gravity Probe B.jpg
A Delta II 7920 on launch pad SLC-2W at VAFB with Gravity Probe B on Board.
XTE launch.gif
A Delta II launch vehicle carrying the X-ray Timing Explorer (XTE) lights up the sky at 8:48 a.m. EST, December 30, 1995. Liftoff occurred from Launch Complex 17, Pad A, on Cape Canaveral Air Station under the management of a combined government/contractor launch team that includes NASA, the Air Force and McDonnell Douglas. The XTE spacecraft is outfitted with three scientific instruments that will study X-rays, including their origin and emission mechanisms, and the physical conditions and evolution of X-ray sources within the Milky Way galaxy and beyond. The XTE is one is a series of Explorer missions planned by NASA; it will perform its observations from a vantage point in low Earth orbit for a mission duration expected to last two to five years. The Delta II 7920 expendable launch vehicle carrying the XTE spacecraft into orbit is provided by McDonnell Douglas. Delta 230, as this vehicle was designated, is the first in the Delta family to fly outfitted with a new advanced avionics system.
Mating of two GEM 40 boosters to STEREO's Delta II rocket.jpg
KENNEDY SPACE CENTER, FLA. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the mobile service tower moves around the Boeing Delta II rocket for installation of the remaining solid rocket boosters. The Delta rocket is the launch vehicle for NASA's Solar Terrestrial Relations Observatory (STEREO). Preparations are under way for a liftoff no earlier than Aug. 1. STEREO consists of two spacecraft whose mission is the first to take measurements of the sun and solar wind in 3-D. This new view will improve our understanding of space weather and its impact on the Earth.
Delta II 7420 on Launch Pad SLC-2W.jpg
On Vandenberg Air Force Base Space Launch Complex 2W, the Delta II rocket stands ready for fueling in preparation for launch. The CALIPSO and CloudSat satellites are set to launch at 6:02 a.m. EDT on April 23 from Vandenberg Air Force Base (VAFB) on missions to study clouds and aerosols, tiny particles in the air. CALIPSO and CloudSat are set to fly into orbit aboard a Boeing Delta II rocket. The Delta II is designed to boost medium-sized satellites and robotic explorers into space. NASA selected a model 7420-10C for this mission, which is a two-stage rocket equipped with four strap-on motors and a protective 10-foot payload fairing.
Delta II Heavy second stage mated to the first stage.jpg
The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is lifted up the mobile service tower on Pad 17-B, Cape Canaveral Air Force Station. At right can be seen the first stage of the Delta II and the nine Solid Rocket Boosters surrounding it. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
Delta-7925H MER-B (Opportunity).jpg
On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
Delta2-7425 2001 mars odyssey.jpg
Launch of the Delta II 7925 carrying the 2001 Mars Odyssey in 2001.
Delta II (GRAIL).ogv
NASA's Twin GRAIL spacecraft head for their lunar mission aboard a Delta II rocket.
Delta II 7920 second stage.jpg
Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
Delta II Heavy ignition with GLAST.jpg
Eine Delta II 7920 Heavy zündete um 16:05 Uhr UTC am 11. Juni 2008 auf Startplatz 17B in der Cape Canaveral Air Force Station.
Delta II 7925 (2925) rocket with Deep Impact.jpg
The sun rises behind Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., where the Boeing Delta II rocket carrying the Deep Impact spacecraft waits for launch. Gray clouds above the horizon belie the favorable weather forecast for the afternoon launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impact’s flyby spacecraft will reveal the secrets of the comet’s interior by collecting pictures and data of how the crater forms, measuring the crater’s depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
Launch of NEAR on a Delta II 7925-8.jpg
Orginal Full Description: The Near Earth Asteroid Rendezvous (NEAR) spacecraft embarks on a journey that will culminate in a close encounter with an asteroid. The launch of NEAR inaugurates NASA's irnovative Discovery program of small-scale planetary missions with rapid, lower-cost development cycles and focused science objectives. NEAR will rendezvous in 1999 with the asteroid 433 Eros to begin the first long-term, close-up look at an asteroid's surface composition and physical properties. NEAR's science payload includes an x-ray/gamma ray spectrometer, an near-infrared spectrograph, a laser rangefinder, a magnetometer, a radio science experiment and a multi-spectral imager.
Delta II 7925-10L with STEREO on Launch Pad 17B.jpg
KENNEDY SPACE CENTER, FLA. – After the mobile service tower has rolled away, the Delta II rocket with the STEREO spacecraft at top stands alone next to the launch gantry. Liftoff is scheduled in a window between 8:38 and 8:53 p.m. on Oct. 25. STEREO (Solar Terrestrial Relations Observatory) is a two-year mission using two nearly identical observatories, one ahead of Earth in its orbit and the other trailing behind. The duo will provide 3-D measurements of the sun and its flow of energy, enabling scientists to study the nature of coronal mass ejections and why they happen. The ejections are a major source of the magnetic disruptions on Earth and are a key component of space weather. The disruptions can greatly effect satellite operations, communications, power systems, humans in space and global climate. Designed and built by the Johns Hopkins University Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results.
Delta 7320-10C launching Swift.jpg
The engines of a Boeing Delta II expendable launch vehicle ignite to blast NASA's Swift spacecraft on its way at Complex 17A, Cape Canaveral Air Force Station, on Nov. 20 at 12:16:00.611 p.m. EST. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands.
Delta II 7925 Navstar GPS.jpg
The Air Force Delta II vehicle sits poised on Complex 17A at the Cape Canaveral Air Station, ready to carry the 19th NAVSTAR Global Positioning System Satellite into orbit. A secondary NASA experiment, the Small Expendable Deployer System (SEDS), will also be deployed.