Datenübertragungsrate

Die Datenübertragungsrate (auch Datentransferrate, Datenrate; englisch data transfer rate) ist in der Informationstechnik die Übertragungsgeschwindigkeit, mit der eine bestimmte Datenmenge innerhalb eines Zeitintervalls über einen Übertragungskanal übertragen wird.

Allgemeines

Bei einer Datenübertragung von einem Absender zu einem Empfänger müssen die Daten oder Informationen einen Übertragungskanal durchlaufen. Dabei gibt die Datenübertragungsrate an, welcher Informationsfluss in Binärziffern pro Zeitspanne übertragen wird.[1] Die Bitrate gibt als Maßeinheit die Datenmenge in einem digitalen Netz an, ausgedrückt in Bits pro Sekunde (Bit/s).[2] Übliche Messgrößen für die Datenübertragungsrate sind Bit/s, kbit/s, Mbit/s oder Gbit/s.

Ein Übertragungskanal kann beispielsweise eine Verbindung im Rechnernetz, eine Schnittstelle zu einem Speichermedium oder die Verbindung zu einem Internetdienstanbieter sein.[3] Heute wird die Qualität eines Internetzugangs an seiner Datenübertragungsrate gemessen.[4]

Sprachlich nicht exakt, da die Begriffe zwar für verwandte, aber eigentlich andere Größen stehen, sind die Bandbreite oder Kapazität. Ebenfalls zu unterscheiden ist der Datendurchsatz, bei dem nur die reinen Nutzdaten berücksichtigt werden, wohingegen bei der Datenübertragungsrate auch eventuelle Steuerdaten mitzählen. Die maximal mögliche Datenübertragungsrate, die fehlerfrei über einen Kanal übertragen werden kann, wird als Kanalkapazität bezeichnet. Zusammen mit der Latenzzeit (Antwortverzögerung) ist sie ein Maß für die Leistungsfähigkeit eines Kanals.

Anwendung

Die Datenübertragungsrate ist nicht immer konstant, sondern sie ist abhängig vom verwendeten Kommunikationsprotokoll, Mobilfunkstandards (4G oder 5G), Qualität der Leitung (Glasfaserkabel, Kupferkabel), Netzabdeckung, Netzlast, Endgerätetyp, Anzahl der Benutzer in einer Funkzelle oder der zur Verfügung stehenden Bandbreite.[5] Glasfaserkabel weisen geringere Übertragungsverluste und weit höhere Datenübertragungsraten als Kupferkabel auf.[6] Je größer die Bandbreite eines Übertragungskanals, umso mehr Daten können pro Zeitspanne übertragen werden.[7] Ist die Netzlast eines Datennetzes überlastet, kommt es zum Denial of Service.

Arten

Unterschieden wird zwischen der symmetrischen und asymmetrischen Datenübertragung.[8]

  • Symmetrische Datenübertragung: Die Datenübertragungsrate ist für Download und Upload gleich groß. Typische Anwendungen sind Sprachübertragung (Mobilfunk) oder Videokonferenzen.
  • Asymmetrische Datenübertragung: Die Datenübertragungsrate ist für Download und Upload unterschiedlich, die Download-Bitrate ist meist wesentlich höher als die Upload-Rate. Typische Anwendung ist das Internet über DSL-Anschlüsse.

Das Internet bietet sich für die asymmetrische Datenübertragung geradezu an, weil die Internet-Nutzer meist sehr viele Daten herunterladen, aber nur wenige hochladen.

Kategorien

Für die Datenübertragung sind drei Geschwindigkeitskategorien definiert:[9]

Maße

Die Datenübertragungsrate berechnet sich aus der Datenmenge pro Zeitspanne :

.

Die Datenmenge wird gemessen in Bits, die Zeit in Sekunden. Demnach ergibt sich für die Datenübertragungsrate die Einheit Bit pro Sekunde (Bit/s bzw. bit/s, früher b/s) bzw. englisch bits per second (bps). Größere Werte werden in Vielfachen angegeben und mit SI-Einheitenvorsätzen versehen:

  • kilobit pro Sekunde (kbit/s oder kbps),
  • Megabit pro Sekunde (Mbit/s bzw. Mbps),
  • Gigabit pro Sekunde (Gbit/s bzw. Gbps).

Wichtig hierbei ist, dass bei Datenübertragungsraten die Einheitenvorsätze in ihrer SI-konformen dezimalen Bedeutung verwendet werden und nicht als Binärpräfixe. 1 kbit/s sind also 1.000 bit/s und nicht 1.024 bit/s. So überträgt ein Gigabit-Ethernet bei 125 MBaud durch das 5-PAM-Modulationsverfahren mit 2 bit pro Symbol und Adernpaar über vier Adernpaare 1.000.000.000 bit/s. Bei Datenraten von Audiosignalen gilt das Gleiche: Eine Audio-CD mit einer Abtastrate von 44,1 kHz bei zwei Kanälen mit je 16 bit hat eine Datenübertragungsrate von 1.411.200 bit/s was den üblich angegebenen 1.411 kbit/s entspricht. Und auch bei MP3 gilt: 128 kbit/s = 128.000 bit/s.

In Bereichen, in denen eine parallele Datenübertragung eingesetzt wird (vor allem beim Zugriff auf Datenspeicher über einen Datenbus), wird die Übertragungsrate auch häufig in Byte pro Sekunde (Byte/s, kurz B/s auf Englisch Bps) angegeben, womit üblicherweise Vielfache von 8 Bit pro Sekunde gemeint sind; man muss also darauf achten, ob eine Übertragungsrate zum Beispiel mit 1 MB/s oder mit 1 Mbit/s angegeben wird (erstere Angabe entspricht exakt dem Achtfachen der Geschwindigkeit der letzteren). Eine Angabe in Baud ist dagegen falsch, denn das ist die Einheit für die Schrittgeschwindigkeit bzw. Symbolrate (Baudrate).

Häufig ist es bei einem angegebenen Wert unklar, an welcher Stelle bzw. welcher Protokollebene diese Datenrate erzielt wird und welche Datenrate dem Benutzer tatsächlich zur Verfügung steht. Zum Beispiel können bei USB 2.0 Hi-Speed mit einer nominellen Geschwindigkeit von 480 Mbit/s nur ca. 300 Mbit/s zur Übertragung genutzt werden. Bei Ethernet bezieht sich die angegebene Datenrate immer auf die MAC-Ebene; die physische Datenrate kann wesentlich höher sein, je nach Leitungscode. Bei Fibre Channel wird immer die (gerundete) physische Datenrate angegeben, tatsächlich nutzbar sind 20 % weniger (bis 8 Gbit/s), ebenso bei Serial ATA und Serial Attached SCSI.

Zusammenhang zwischen Datenübertragungsrate, Bandbreite und Schrittgeschwindigkeit

Die Kanalkapazität (maximale Datenübertragungsrate), Bandbreite und Schrittgeschwindigkeit hängen miteinander zusammen. Dieser Zusammenhang wird durch das Shannon-Hartley-Gesetz beschrieben und auch als Nachrichtenquader der Nachrichtentechnik bezeichnet. Für einen Übertragungskanal mit der Bandbreite und dem Störabstand mit additivem weißem Rauschen steht die maximal erreichbare, fehlerfreie Datenübertragungsrate in folgendem Zusammenhang:

.

Das bedeutet, sowohl die Bandbreite als auch der Störabstand beeinflussen die Kanalkapazität. Eine vorgegebene Datenübertragungsrate lässt sich sowohl in einem Übertragungskanal mit großem Störabstand und geringer Bandbreite als auch in einem solchen mit geringerem Störabstand, aber entsprechend größerer Bandbreite erreichen.

Wesentlich ist dabei, dass diese Gesetzmäßigkeit nur bei weißem Rauschen gilt, dessen Amplituden normalverteilt sind. Diese Störgröße wird auch als additives weißes gaußsches Rauschen bezeichnet, im Englischen additive white Gaussian noise oder AWGN. Übertragungskanäle, welche nur diese Störungen aufweisen und sich mit obiger Gleichung charakterisieren lassen, werden daher auch als AWGN-Kanäle bezeichnet. Bei Störsignalen mit anderer Verteilung des Rauschspektrums gilt dieser Zusammenhang nicht mehr. Da die Normalverteilung jedoch die maximale differentielle Entropie besitzt, ist WGN als Worst-Case-Störung meist ein hinreichendes Modell für einen gestörten Kanal.

Wenn der Störabstand groß genug ist, können digitale Modulationsverfahren eingesetzt werden, zum Beispiel Quadraturamplitudenmodulation oder Quadraturphasenumtastung. Dadurch können mehr als zwei Zustände (mehr als 1 Bit) pro Symbol codiert werden. Die Übertragungsrate ergibt sich dann als Produkt aus der Symbolrate und dem dualen Logarithmus der pro Symbol möglichen Zustände.

.

In der einfachsten Variante nimmt ein digitales Signal zwei Zustände ein, die man mit „0“ und „1“ bezeichnen kann. Das nennt man binär. Drei Zustände bezeichnet man mit ternär. Bei gleicher Bitrate und drei Zuständen für den Signalparameter beträgt die benötigte Bandbreite nur noch 63 % der Bandbreite (Siehe Nyquist-Bandbreite unter Shannon-Hartley-Gesetz: ), die für binäre Übertragung benötigt wird. Vier Zustände bezeichnet man quaternär – bei gleicher Bitrate und vier Zuständen je Symbol beträgt die benötigte Bandbreite nur noch 50 %.

In jedem Fall stellt die Kanalkapazität die obere Schranke für die Datenrate dar, d. h., es ist mit keinem Verfahren möglich, mehr Informationen pro Zeitspanne über einen Kanal zu übertragen, als durch dessen Kapazität angegeben ist (shannonsches Quellencodierungstheorem):

.

Verschiedene Datenübertragungsraten

Kabelgebunden

StandardDatenübertragungsrateBemerkung
DVB-C4–5 Mbit/sMPEG-2-Kodierung für Video
DVB-C HD6–18 Mbit/sMPEG-4 AVC-Kodierung für Video
DVB-C25–8 Mbit/sMPEG-4 AVC-Kodierung für Video
FireWire 400ca. 400 Mbit/s
Firewire 800ca. 800 Mbit/seine weitere, mit den bisherigen Standards abwärtskompatible Spezifikation Firewire S3200 mit demselben 9-poligen Steckertyp wie FW 800 erreicht bis zu ca. 3,2 Gbit/s und wird vor allem für professionelle Anwendungen im Audio- und TV-Bereich weiterentwickelt und eingesetzt
I²C0,1/0,4/​1,0/​3,4 Mbit/s
NVM Express32 Gbit/sPCIe ×4, 128b130b-codiert
Parallel ATA (IDE)bis 1064 Mbit/s16 bit parallel
Parallel SCSI40–2560 Mbit/sje nach Typ, 8 oder 16 bit parallel
SAS-1 (Serial Attached SCSI)3 Gbit/s8b10b-codiert
SAS-312 Gbit/s8b10b-codiert
Serial ATA1,5 Gbit/s8b10b-codiert
Serial ATA Revision 2.x3 Gbit/s8b10b-codiert
Serial ATA Revision 3.x6 Gbit/s8b10b-codiert
External Serial ATA (eSATA)3 Gbit/s8b10b-codiert
SATA Express16 Gbit/sPCIe ×2, 128b130b-codiert
Thunderbolt (Schnittstelle)10 Gbit/sauch bekannt als Lightpeak
Thunderbolt 2 (Schnittstelle)20 Gbit/s
Thunderbolt 3 (Schnittstelle)40 Gbit/s
USB 1.0 / 1.11,5 / 12 Mbit/s
USB 2.0480 Mbit/snur bei mit dem Zertifizierungslogo versehenen Geräten voll erreicht
USB 3.0 (USB 3.1 Gen 1; USB 3.2 Gen 1)5 Gbit/sBruttorate mit 8b10b-Kodierung
USB 3.1 Gen 2 (USB 3.2 Gen 2)10 Gbit/sBruttorate mit 128b132b-Kodierung
USB 3.2 Gen 2x220 Gbit/s
USB420–40 Gbit/s

Drahtlos

Funksignale:

StandardDatenübertragungsrateBemerkung
DCF77 (Funkuhr-Signal)1 Bit/s
Marssonde Mariner 4 (1964)8,3 Bit/s
GSM (Mobilfunk)9,6 kbit/s
IrDA 1.0 (Infrarotschnittstelle)9,6–115 kbit/s
IrDA 1.14 Mbit/s
IrDA 1.316 Mbit/s
GPRS (Mobilfunk 2G)53,6 kbit/s (theoretisch bis 171,2 kbit/s)
Merkursonde Mariner 10 (1973)100–150 kbit/s
EDGE (Mobilfunk 2G)Download: 260 kbit/s

Upload: 110 kbit/s

BGAN (Internet über Satellit)bis zu 420 kbit/s
DECT (drahtlose Festnetztelefone)ca. 800 kbit/s
UMTS (Mobilfunk 3G)384 kbit/s
HSDPA (mobile Datenübertragung 3.5G)3,6/7,2 Mbit/s
Digital Radio Mondiale11–26 kbit/s
DRM+35–185 kbit/s
DMB1–2 Mbit/s
Bluetooth 2.0+EDR3 Mbit/s
DVB-T2–3 Mbit/sMPEG-2-Kodierung für Video
DVB-S4–5 Mbit/sMPEG-2-Kodierung für Video
DVB-S25–20 Mbit/sMPEG-4-Kodierung für Video
WiMAX40–100 Mbit/s
3GPP (LTE) (Mobilfunk 3.9G)Download: 300 Mbit/s

Upload: 75 Mbit/s

LTE-Advanced (Mobilfunk 4G)1000 Mbit/s
WLAN (drahtlose Datenübertragung)1–6933 Mbit/sim verbreiteten Standard IEEE 802.11g typischerweise 20 Mbit/s netto und 56 Mbit/s brutto
ZigBee250 kbit/s

Anzeige im Handydisplayː siehe Mobilfunkstandard

Medien

Medien und Peripheriegeräte sind für unterschiedliche Datenübertragungsraten ausgelegt.

DSL-Varianten

Bei den verschiedenen DSL-Varianten gibt es folgende Datenübertragungsraten:[10]

DSL-VariantenDatenübertragungsrate
downstream
Datenübertragungsrate
upstream
ADSL1,5 bis 9 Mbit/s64 kBit/s bis 1,5 Mbit/s
SDSL3 Mbit/s3 Mbit/s
HDSL2 Mbit/s2 Mbit/s
VDSL13 bis 52 Mbit/s24 Mbit/s
Mobilfunk[11]
FrequenzReichweiteDatenübertragungsrate
800 MHz≤ 15 km≤ 75 Mbit/s
1,8 GHz≤ 4 km≤ 150 Mbit/s
2,1 GHz≤ 3 km≤ 150 Mbit/s
2,6 GHz≤ 2 km≤ 150 Mbit/s
Andere Medien
MediumDatenübertragungsrate
downstream
Datenübertragungsrate
upstream
GPRS55,6 kbit/s
ISDN64 kbit/s64 kbit/s
GSM EDGE236,8 kbit/s
komprimierte Audiodatei[12]8–320 kbit/s[13]
Bluetooth723,6 kbit/s57,6 kbit/s
Audio-CD1411 kbit/s[14]unidirektional
Digital Video Broadcasting2,0–15 Mbit/s
UMTS/3G7,2 Mbit/s1,45 Mbit/s
LTEmindestens 100 Mbit/smindestens 100 Mbit/s
FireWire100, 200, 400 oder 1600 Mbit/s

Die maximal erzielbaren Datenübertragungsraten unterliegen einer laufenden Weiterentwicklung, so dass viele genannte Datenraten wahrscheinlich nur für kurze Zeit aktuell sind.

Rechnernetz

Rechnernetze:

StandardDatenübertragungsrateBemerkung
Arcnet2,5 Mbit/s, 20 Mbit/sAlt-Technik.
Token Ring4 Mbit/s, 16 Mbit/sAlt-Technik. Spezifikation für 100 Mbit/s und 1000 Mbit/s sind vorhanden.
PowerLAN14/85/​200/​500/​1200/2000 Mbit/s
Fibre Channel1 bis 128 Gbit/s
einzelner Lichtwellenleiter107 Gbit/sRekord für einen einzelnen Leiter ohne Frequenzmultiplex über 160 km[15]
InfiniBand200 Gbit/sHDR bei 4-kanaliger Verbindung[16]
Ethernet10 Mbit/s bis 400 Gbit/s
Interkontinental-Lichtwellenleiterbündel1 Tbit/s
Laser43 Tbit/sWeltrekord für die schnellste Datenübertragung mit einem Laser[17]

Internet

Beim Internetzugang:

StandardDatenübertragungsrate
Modemmaximal 56 kbit/s
ISDN64 kbit/s, 128 kbit/s bei Nutzung beider B-Kanäle

2 Mbit/s bei Primärmultiplexanschluss

ADSL384 kbit/s Down- und 64 kbit/s Upstream (DSL „light“) bis

25 Mbit/s Down- und 3,5 Mbit/s Upstream (ADSL2+)

VDSL25 Mbit/s bis 300 Mbit/s[18]
DOCSIS (TV-Kabel)10 Gbit/s Down- und 1 Gbit/s Upstream[19]
Fibre to the Home (FTTH; Glasfaser)1+ Gbit/s Downstream

Video- und Audiosignale

StandardDatenübertragungsrateBemerkung
Gespräch in Telefonqualität64 kbit/setwa 3,1 kHz Bandbreite (ISDN – wobei praktisch keine Techniken der Irrelevanz- und Redundanz-Reduktion („Komprimierung“) angewandt werden.)
Komprimierte Musikdateiüblicherweise zwischen etwa 24 kbit/s (Streaming Audio über analoges Telefonmodem) und

9,8 Mbit/s (maximale Datenrate für verlustfrei komprimierte Mehrkanaltonspuren einer SACD/DVD-A)

Verlustfrei komprimierte Musikdateizwischen 320 kbit/s und 5000 kbit/s je nach QuelleFlac
Audio-CDca. 1411 kbit/s, Abtastrate 44,1 kHz, 16 Bit und zwei Kanälepraktisch ohne Irrelevanz- und Redundanz-Reduktion
SD-Fernseh-Bildca. 3 Mbit/sMPEG-2-komprimiert
Video-DVDca. 6 Mbit/sMPEG-2-komprimiert
SD-Videoca. 400 Mbit/s576p 50 Hz unkomprimiert
HD-Videoca. 1,3 Gbit/s720p 60 Hz 24b/px unkomprimiert
Full-HD-Videoca. 3 Gbit/s1080p 60 Hz 24b/px unkomprimiert
4K-UHD1-Video (2160p)ca. 10,2 Gbit/s bei 30 Hz

ca. 14,93 Gbit/s bei 60 Hz

2160p
8K-UHD2-Videoca. 24 Gbit/s4320p 120 Hz

Höhere Datenübertragungsraten neuerer Technologien ermöglichen zunehmend die Übertragung immer breitbandigerer Audio- und Videosignale.

Technische Aspekte

Datenübertragungsraten gehören zu den wichtigsten technischen Daten, die der Kaufentscheidung für ein Endgerät zugrunde gelegt werden. Um die Datenrate konstant zu halten, rotiert eine Compact Disc im Wiedergabegerät mit einer variablen Drehzahl zwischen 500 1/min und 200 1/min, wobei die Drehzahl von innen nach außen abnimmt.[20]

Kanalbündelung führt bei ISDN zur Zusammenfassung von B-Kanälen zwecks Erhöhung der Datenübertragungsrate (theoretisch zur Verdoppelung).[21]

Für in eine Richtung laufende (Downstream) Echtzeitdienste wie Video-Streaming und Internetfernsehen sind hohe bis sehr hohe Datenübertragungsraten erforderlich, beispielsweise mindestens 1,5 Mbit/s für Video-Streaming. Auch bei diesen Diensten stellen asymmetrische Datenübertragung und Zeitverzögerung kein Problem dar, sind jedoch schwankungssensibel.[22]

Siehe auch

Einzelnachweise

  1. Kristian Kroschel: Datenübertragungsrate. In: Hans-Jochen Schneider (Hrsg.): Lexikon Informatik und Datenverarbeitung. 1998, S. 217 (books.google.de).
  2. Detlef Jürgen Brauner, Robert Raible-Besten, Martin Weigert: Internet-Lexikon. 1997, S. 29 (books.google.de).
  3. Pierre Hansch/Christian Rentschler, Emotion@Web: Emotionale Websites durch Bewegtbild und Sound-Design, 2012, S. 31
  4. Silke Jandt, Technikadäquate Grundrechtsentwicklung, 2022, S. 247
  5. Peter Winkler, Computer-Lexikon 2009, 2008, S. 222
  6. Detlef Jürgen Brauner/Robert Raible-Beste/Martin M. Weigert, Multimedia-Lexikon, 1998, S. 156
  7. Insa Sjurts, Gabler Lexikon Medien-Wirtschaft, 2004, S. 45
  8. Patrick Schnabel, Kommunikationstechnik-Fibel, 2019, o. S.
  9. Friedrich Wittgruber, Digitale Schnittstellen und Bussysteme, 2002, S. 163 f.
  10. Christian Schmitt, Digital Suscriber Line, in: Insa Sjurts (Hrsg.), Gabler Lexikon Medien-Wirtschaft, 2004, S. 116
  11. Jürgen Krieger, 1. Fachkongress Digitale Transformation im Lebenszyklus der Verkehrsinfrastruktur, 2021, ISBN 3-8169-3530-3, S. 195
  12. MP3, WAV, AAC
  13. bei gängiger Datenkompression zwischen 128 und 256 kbit/s
  14. bei einer Abtastrate von 44,1 kHz
  15. Pressemitteilung (Memento vom 25. Januar 2008 im Internet Archive) der Siemens AG, 20. Dezember 2006
  16. Speeds of storage networking technologies rise as flash use spikes von SearchStorage 30. May 2017
  17. Spektrum.de vom 1. August 2014, Dänen stellen neuen Weltrekord bei Datenübertragung auf
  18. ITU G.993.2 Amendment 1
  19. DOCSIS 3.1
  20. Insa Sjurts, Gabler Lexikon Medien-Wirtschaft, 2004, S. 78
  21. Detlef Jürgen Brauner, Robert Raible-Besten, Martin Weigert: Internet-Lexikon. 1997, S. 121 (books.google.de).
  22. Günter Knieps/Hans-Jörg Weiß (Hrsg.), Fallstudien zur Netzökonomie, 2009, S. 68