Albedo

Albedowerte
… im Sonnensystem[1]
Himmels-
körper
mittlere Albedo
geometrischsphärisch
Merkur0,1420,068
Venus0,6890,77
Erde[2]0,4340,306
Mars0,1700,250
Jupiter0,5380,343
Saturn0,4990,342
Uranus0,4880,300
Neptun0,4420,290
Pluto0,520,72
Erdmond0,120,11
Enceladus1,38[3]0,99
… verschiedener Oberflächen
MaterialAlbedo
Frischer Schnee0,80–0,90
Alter Schnee0,45–0,90
Wolken0,60–0,90
Wüste0,30
Savanne0,20–0,25
Felder (unbestellt)0,26
Rasen0,18–0,23
Wald0,05–0,18
Asphalt0,05–0,25 (0,3)[4]
Beton0,1–0,4 (0,7)[4]
Wasserfläche
(Neigungswinkel > 45°)
0,05
Wasserfläche
(Neigungswinkel > 30°)
0,08
Wasserfläche
(Neigungswinkel > 20°)
0,12
Wasserfläche
(Neigungswinkel > 10°)
0,22
Der Saturnmond Iapetus hat mit einer sichtbaren geometrischen Albedo von 0,05 bis 0,5 den größten Helligkeitskontrast von allen bekannten Himmelskörpern im Sonnensystem.[5]

Die Albedo (lateinisch albedo ‚Weiße‘; von lateinisch albus ‚weiß‘) ist ein Maß für das Rückstrahlvermögen (Reflexionsstrahlung) von diffus reflektierenden, also nicht selbst leuchtenden Oberflächen. Sie wird als dimensionslose Zahl angegeben und entspricht dem Verhältnis von rückgestrahltem zu einfallendem Licht (eine Albedo von 0,9 entspricht 90 % Rückstrahlung). Die Albedo hängt bei einer gegebenen Oberfläche von der Wellenlänge des einstrahlenden Lichtes ab und kann für Wellenlängenbereiche – z. B. das Sonnenspektrum oder das sichtbare Licht – angegeben werden. Vor allem in der Meteorologie ist sie von Bedeutung, da sie Aussagen darüber ermöglicht, wie stark sich eine Oberfläche erwärmt – und damit auch die Luft in Kontakt mit der Oberfläche.

In der Klimatologie ist die so genannte Eis-Albedo-Rückkopplung ein wesentlicher, den Strahlungsantrieb und damit die Strahlungsbilanz der Erde beeinflussender Faktor, der relevant für den Erhalt des Weltklimas ist.

Verschiedene Oberflächen haben eine unterschiedliche Rückstrahlung: Anhand der Landschaft werden ausgewählte Albedowerte aufgeführt.

In der 3D-Computergrafik findet die Albedo ebenfalls Verwendung; dort dient sie als Maß für die diffuse Streukraft verschiedener Materialien für Simulationen der Volumenstreuung.

In der Astronomie spielt die Albedo eine wichtige Rolle, da sie mit grundlegenden Parametern von Himmelskörpern (z. B. Durchmesser, scheinbare/absolute Helligkeit) zusammenhängt.

Albedoarten

Es werden verschiedene Arten der Albedo unterschieden:

  • Die sphärische Albedo (auch planetarische Albedo, Bondsche Albedo oder bolometrische Albedo genannt) ist das Verhältnis des von einer Kugeloberfläche in alle Richtungen reflektierten Lichts zu der auf den Kugelquerschnitt einfallenden Strahlung. Bei der planetarischen Albedo gilt als Oberfläche der obere Rand der Atmosphäre. Die sphärische Albedo liegt stets zwischen 0 und 1. Der Wert 0 entspricht einer vollständigen Absorption und 1 einer vollständigen Reflexion des einfallenden Lichts.
  • Die geometrische Albedo ist das Verhältnis des von einer vollen bestrahlten Fläche zum Beobachter gelangenden Strahlungsstroms zu dem, der von einer diffus reflektierenden, absolut weißen Scheibe (ein sogenannter Lambertstrahler) gleicher Größe bei senkrechtem Lichteinfall zum Beobachter gelangen würde. Die geometrische Albedo kann in seltenen Fällen auch Werte größer 1 annehmen,[3] weil reale Oberflächen nicht ideal diffus reflektieren.

Das Verhältnis zwischen sphärischer Albedo und geometrischer Albedo ist das sogenannte Phasenintegral (siehe Phase), das die winkelabhängige Reflektivität jedes Flächenelements berücksichtigt.[6]

Messung

Die Messung der Albedo erfolgt über Albedometer und wird in Prozent angegeben. In der Astronomie können aufgrund der großen Entfernungen keine Albedometer eingesetzt werden. Die geometrische Albedo kann hier aber aus der scheinbaren Helligkeit und dem Radius des Himmelskörpers und den Entfernungen zwischen Erde, Objekt und Sonne berechnet werden. Um die sphärische Albedo zu bestimmen, muss auch das Phasenintegral (und somit die Phasenfunktion) bekannt sein. Diese ist allerdings nur für diejenigen Himmelskörper vollständig bekannt, die sich innerhalb der Erdbahn bewegen (Merkur, Venus). Für die oberen Planeten kann die Phasenfunktion nur teilweise bestimmt werden, wodurch auch die Werte für ihre sphärische Albedo nicht exakt bekannt sind.

Satelliten der US-Raumfahrtbehörde NASA messen seit ca. 2004 die Albedo der Erde.[7] Diese ist insgesamt, abgesehen von kurzfristigen Schwankungen, in den letzten zwei Jahrzehnten konstant geblieben; regional dagegen gab es Veränderungen von mehr als 8 %. In der Arktis z. B. ist die Rückstrahlung geringer, in Australien höher geworden.[8] Demgegenüber steht eine Studie aus dem Jahr 2021 – sie zeigt, dass die Albedo zwischen 1998 und 2017 um ~0,5 % abgesunken ist, wobei der Zusammenhang zum Klimawandel ungeklärt ist. Die Entwicklung könnte durch den Klimawandel mitverursacht worden sein und/oder die globale Erwärmung signifikant verstärken.[9][10]

Das Deep Space Climate Observatory misst seit 2015 die Erd-Albedo in einem Abstand von 1,5 Millionen Kilometern zur Erde vom Lagrange-Punkt L1 aus. An diesem Punkt hat die Sonde einen dauerhaften Blick auf die sonnenbeschienene Seite der Erde.

Einflüsse

Prozent des reflektierten Sonnenlichtes in Abhängigkeit von unterschiedlichen Erdoberflächenbeschaffenheiten

Die Oberflächenbeschaffenheit eines Himmelskörpers bestimmt seine Albedo. Der Vergleich mit den Albedowerten irdischer Substanzen ermöglicht es also, Rückschlüsse auf die Beschaffenheit anderer planetarer Oberflächen zu ziehen. Gemäß der Definition der sphärischen Albedo ist die Voraussetzung von parallel einfallendem Licht wegen der großen Entfernungen der reflektierenden Himmelskörper von der Sonne als Lichtquelle sehr gut gegeben. Die stets geschlossene Wolkendecke der Venus strahlt viel mehr Licht zurück als die basaltartigen Oberflächenteile des Mondes. Die Venus besitzt daher mit einer mittleren sphärischen Albedo von 0,76 ein sehr hohes, der Mond mit durchschnittlich 0,12 ein sehr geringes Rückstrahlvermögen. Die Erde hat eine mittlere sphärische Albedo von 0,3.[11] Durch die globale Erwärmung verschieben sich auf der Erde die regionalen Albedo-Werte. Durch Verschiebung der Wolkenbänder sank die Albedo z. B. in der nördlichen gemäßigten Zone, stieg dafür aber weiter im Norden.[12] Die höchsten bisher gemessenen Werte fallen auf die Saturnmonde Telesto (0,994) und Enceladus (0,99). Der niedrigste Mittelwert wurde mit nur 0,03 am Kometen Borrelly festgestellt.

Glatte Oberflächen wie Wasser, Sand oder Schnee haben einen relativ hohen Anteil spiegelnder Reflexion, der von Kreide ebenso, ihre Albedo ist deshalb stark abhängig vom Einfallswinkel der Sonnenstrahlung (siehe Tabelle).

Die Albedo ist außerdem abhängig von der Wellenlänge des Lichts, das untersucht wird, weswegen bei der Angabe der Albedowerte immer der entsprechende Wellenlängenbereich angegeben werden sollte.

Berücksichtigung in der Bautechnik

Zur Verbesserung des städtischen Mikroklimas werden bei der Planung und Ausführung von Verkehrsflächen im zunehmenden Maße Oberflächen mit günstigen Albedowerten berücksichtigt.

Die Reflexionseigenschaften von Asphalt- und Betonoberflächen können beispielsweise durch die Verwendung heller Gesteinskörnungen optimiert werden. Zwei ausführliche Fachartikel finden sich in [13].

Weblinks

Wiktionary: Albedo – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. NASA: Lunar and Planetary Science; siehe Fact Sheets
  2. Earth Fact Sheet. Spezifische Angaben zur Erde (Fact Sheet Earth). Abgerufen am 18. November 2022 (englisch).
  3. a b Anne Verbiscer, Richard French, Mark Showalter, Paul Helfenstein: Enceladus: Cosmic Graffiti Artist Caught in the Act. In: Science. Band 315, Nr. 5813, 9. Februar 2007, doi:10.1126/science.1134681, PMID 17289992 (englisch, [1] [abgerufen am 2. August 2013]).
  4. a b Fachzeitschrift Straße und Autobahn, Heft 09/2023, Seite 718, Tabelle 1
  5. NASA: Saturnian Satellite Fact Sheet. 13. Oktober 2015, abgerufen am 16. Juli 2015
  6. Phase Integral – from Eric Weisstein’s World of Physics. In: scienceworld.wolfram.com. Abgerufen am 28. Februar 2015.
  7. Monika Seynsche: Die Arktis nimmt immer mehr Wärme auf, Deutschlandfunk, Forschung Aktuell, 18. Februar 2014, abgerufen am 20. Februar 2014.
  8. Measuring Earth’s Albedo. Image of the day. vom 21. Oktober 2014@earthobservatory.nasa.gov; FAZ 5. November 2014, S. N1.
  9. Jennifer Gray: The Earth isn't as bright as it once was In: CNN. Abgerufen am 19. Oktober 2021. 
  10. P. R. Goode, E. Pallé, A. Shoumko, S. Shoumko, P. Montañes-Rodriguez, S. E. Koonin: Earth's Albedo 1998–2017 as Measured From Earthshine. In: Geophysical Research Letters. 48. Jahrgang, Nr. 17, 2021, ISSN 1944-8007, S. e2021GL094888, doi:10.1029/2021GL094888 (englisch).
  11. P. R. Goode et al.: Earthshine Observations of the Earth’s Reflectance. In: Geophysical Research Letters. Band 28, Nr. 9, 2001, S. 1671–1674
  12. Wolkenveränderungen heizen die Erwärmung durch positive Rückkopplung weiter an. In: scinexx.de. 12. Juli 2016, abgerufen am 1. März 2019.
  13. Dr.-Ing. Arnd Bartholomäus: Aufgehellte Deckschichten, Teile 1 und 2 in der Fachzeitschrift Straße und Autobahn, Heft 09/2023

Auf dieser Seite verwendete Medien

Iapetus as seen by the Cassini probe - 20071008.jpg

Iapetus as seen by the Cassini probe.
Original NASA caption: Cassini captures the first high-resolution glimpse of the bright trailing hemisphere of Saturn's moon Iapetus.
This false-color mosaic shows the entire hemisphere of Iapetus (1,468 kilometers, or 912 miles across) visible from Cassini on the outbound leg of its encounter with the two-toned moon in Sept. 2007. The central longitude of the trailing hemisphere is 24 degrees to the left of the mosaic's center.
Also shown here is the complicated transition region between the dark leading and bright trailing hemispheres. This region, visible along the right side of the image, was observed in many of the images acquired by Cassini near closest approach during the encounter.
Revealed here for the first time in detail are the geologic structures that mark the trailing hemisphere. The region appears heavily cratered, particularly in the north and south polar regions. Near the top of the mosaic, numerous impact features visible in NASA Voyager 2 spacecraft images (acquired in 1981) are visible, including the craters Ogier and Charlemagne.
The most prominent topographic feature in this view, in the bottom half of the mosaic, is a 450-kilometer (280-mile) wide impact basin, one of at least nine such large basins on Iapetus. In fact, the basin overlaps an older, similar-sized impact basin to its southeast.
In many places, the dark material--thought to be composed of nitrogen-bearing organic compounds called cyanides, hydrated minerals and other carbonaceous minerals--appears to coat equator-facing slopes and crater floors. The distribution of this material and variations in the color of the bright material across the trailing hemisphere will be crucial clues to understanding the origin of Iapetus' peculiar bright-dark dual personality.
The view was acquired with the Cassini spacecraft narrow-angle camera on Sept. 10, 2007, at a distance of about 73,000 kilometers (45,000 miles) from Iapetus.
The color seen in this view represents an expansion of the wavelengths of the electromagnetic spectrum visible to human eyes. The intense reddish-brown hue of the dark material is far less pronounced in true color images. The use of enhanced color makes the reddish character of the dark material more visible than it would be to the naked eye.
This mosaic consists of 60 images covering 15 footprints across the surface of Iapetus. The view is an orthographic projection centered on 10.8 degrees south latitude, 246.5 degrees west longitude and has a resolution of 426 meters (0.26 miles) per pixel. An orthographic view is most like the view seen by a distant observer looking through a telescope.
At each footprint, a full resolution clear filter image was combined with half-resolution images taken with infrared, green and ultraviolet spectral filters (centered at 752, 568 and 338 nanometers, respectively) to create this full-resolution false color mosaic.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
Albedo-Rückstrahlung Infografik.png
Autor/Urheber: eskp.de, Lizenz: CC BY 4.0
Verschiedene Oberflächen haben eine unterschiedliche Rückstrahlung: Anhand der Landschaft werden ausgewählte Albedowerte dargestellt.
Albedo-d hg.png
Autor/Urheber: Hannes Grobe, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, Lizenz: CC BY-SA 2.5
Albedo - Anteil [%] des in den Weltraum reflektierten Sonnenlichtes in Abhängigkeit von unterschiedlichen Erdoberflächenbeschaffenheiten