Liste der Entdeckungen der Planeten und ihrer Monde

Diese Liste zeigt die Abfolge der Erstbeobachtungen von bis dahin unbekannten Planeten und Monden im Sonnensystem.

Zum Vergleich sind auch die Entdeckungszeiten der ersten sechs Asteroiden enthalten. Nach diesen sechs wurden jedes Jahr weitere Kleinplaneten gefunden. Die ersten vier dieser Erfolge verteilten sich jedoch über einige Jahre. Diese vier Objekte wurden zu jener Zeit für vollwertige Planeten gehalten. Aus dem gleichen Grund ist auch Pluto aufgeführt, der bis 2006 den Status eines Planeten hatte und seitdem nur noch als Zwergplanet gilt.

Die Namensgebungen fanden nicht immer gleichzeitig mit der Entdeckung des jeweiligen Himmelskörpers statt.

Die Tabelle ist nach dem Datum der Entdeckung bzw. Veröffentlichung sortiert.

  • i: Datum der ersten Aufzeichnung (Foto etc.)
  • o: Datum der ersten visuellen Beobachtung, durchs Teleskop oder auf Fotoplatte (der Zeitpunkt der Entdeckung)
  • p: Datum der Veröffentlichung

Bemerkung: Monde, die mit einem Sternchen (*) markiert sind, haben eine komplizierte Geschichte ihrer Entdeckung. Manche Monde wurden erst nach Jahren bestätigt, andere gingen „verloren“ und wurden später wiederentdeckt. Wieder andere wurden erst Jahre nach der Aufnahme bei der Auswertung auf Fotos der Voyager-Sonden gefunden.

Legende

Die Planeten, Zwergplaneten und ihre natürlichen Satelliten sind in den folgenden Farben markiert:

Erdähnliche PlanetenGasplanetenZwergplaneten
MerkurJupiterCeres
VenusSaturnPluto
ErdeUranusMakemake
MarsNeptunEris
Haumea

Urgeschichte und Altertum

EntdeckungNameBenen-
nung
BildPlanet/Nummer
Benennung
Anmerkungen
 ErdeDiese Liste ist nach der vermeintlichen Entfernung der Planeten zur Erde geordnet;
eine so geordnete Liste wurde erstmals von den griechischen Stoikern erstellt.
MondErdmond
Merkur
Venus
Sonne
Mars
Jupiter
Saturn

17. Jahrhundert

EntdeckungNameBenen-
nung
BildPlanet/Nummer
Benennung
Anmerkungen
o: 7. Januar 1610
p: 13. März 1610
KallistoJupiter IVGalileo Galilei (Galileische Monde),
unabhängig davon Simon Marius.
IoJupiter I
EuropaJupiter II
o: 11. Januar 1610
p: 13. März 1610
GanymedJupiter III
o: 25. März 1655
p: 5. März 1656
TitanSaturn VIHuygens. Huygens „veröffentlichte“ seine Entdeckung zuerst als Anagramm, abgeschickt am 13. Juni 1655.
o: 25. Oktober 1671
p: 1673
IapetusSaturn VIIICassini. Cassini veröffentlichte diese beiden Entdeckungen in Eine Entdeckung von zwei neuen Planeten um Saturn, gemacht im königlichen Pariser Observatorium von Signor Cassini, Philosophische Vorfälle 8 (1673), pp. 5178-5185. Möglicherweise gibt es auch frühere Veröffentlichungen im Journal des scavans.
o: 23. Dezember 1672
p: 1673
RheaSaturn V
o: 21. März 1684
p: 22. April 1686
TethysSaturn IIICassini. Cassini veröffentlichte diese zwei Entdeckungen am 22. April 1686, geprüft durch Ein Auszug des Journal Des Scavans vom April 22 st. N. 1686, mit der Annahme von zwei neuen Satelliten des Saturns, kürzlich entdeckt vom Herrn Cassini am königlichen Observatorium in Paris, Philosophische Vorfälle 16 (1686–1692) pp. 79-85.

In seiner Arbeit Kosmotheeoros[1] (1698 posthum veröffentlicht), bezieht sich Christiaan Huygens darauf: „Jupiter hat, wie man sieht, seine vier und Saturn seine fünf Monde um sich, alle in deren eigenen Umlaufbahnen.“

DioneSaturn IV

18. Jahrhundert

EntdeckungNameBenen-
nung
BildPlanet/Nummer
Benennung
Anmerkungen
o: 13. März 1781
p: 26. April 1781
Uranus7. Planet (1781)Herschel.[2] Herschel gab am 26. April 1781 bekannt, Uranus entdeckt zu haben, und war überzeugt, dass es ein „Komet“ ist.[3]
o: 11. Januar 1787
p: 1787
TitaniaUranus IIIHerschel
OberonUranus IVHerschel
o: 28. August 1789
p: 1790
EnceladusSaturn IIHerschel
o: 17. September 1789
p: 1790
MimasSaturn IHerschel[4]

19. Jahrhundert

EntdeckungNameBenen-
nung
BildPlanet/Nummer
Benennung
Anmerkungen
o: 1. Januar 1801(1) Ceres8. Planet (1801)
Asteroid (1851)
Zwergplanet (2006)
Piazzi
o: 28. März 1802(2) Pallas9. Planet (1802)
Asteroid (1851)
Olbers
o: 1. September 1804(3) Juno10. Planet (1804)
Asteroid (1851)
Harding
o: 29. März 1807(4) Vesta11. Planet (1807)
Asteroid (1851)
Olbers
o: 8. Dezember 1845(5) Astraea12. Planet (1845)
Asteroid (1851)
Hencke[5]
o: 23. September 1846Neptun13. Planet (1846)
8. Planet (1851)
Leverrier, Adams, Galle, d’Arrest
o: 10. Oktober 1846TritonNeptun ILassell[6][7]
o: 1. Juli 1847(6) Hebe14. Planet (1847)
Asteroid (1851)
Hencke[8]
Mit der Entdeckung von (6) Hebe im Jahre 1847 begann eine wahre Flut Neuentdeckungen von Asteroiden. Daher wurde auf Vorschlag von Alexander von Humboldt im Jahre 1851 die Zahl der (großen) Planeten auf acht begrenzt, und der neue Begriff der Asteroiden (auch: Planetoiden oder Kleinplaneten) eingeführt.
o: 16. September 1848HyperionSaturn VIIW.C. Bond, G.P. Bond, Lassell[9][10]
o: 24. Oktober 1851ArielUranus ILassell[11]
UmbrielUranus IILassell[12]
o: 12. August 1877DeimosMars IIHall[13][14][15]
o: 18. August 1877PhobosMars IHall[16][17][18]
o: 9. September 1892
p: 4. Oktober 1892
AmaltheaJupiter VBarnard[19]
i: 16. August 1898
o: 17. März 1899
PhoebeSaturn IXPickering[20][21]

20. Jahrhundert

1901–1970

EntdeckungNameBenen-
nung
BildPlanet/Nummer
Benennung
Anmerkungen
i: 3. Dezember 1904
p: 6. Januar 1905
HimaliaJupiter VIPerrine[22][23][24][25]
i: 2. Januar 1905
p: 27. Februar 1905
ElaraJupiter VIIPerrine[26][27][28]
o: 17. April 1904
p: 28. April 1905
Themis„Saturn X“ (fälschlich)Pickering[29][30]
i: 27. Januar 1908
o: 28. Februar 1908
p: 1. März 1908
PasiphaeJupiter VIIIMelotte[31][32]
i: 21. Juli 1914SinopeJupiter IXNicholson[33]
i: 23. Januar 1930
o: 18. Februar 1930
p: 13. März 1930
Pluto9. Planet (1930)
Zwergplanet (2006)
Tombaugh[34]
i: 6. Juli 1938LysitheaJupiter XNicholson[35]
i: 30. Juli 1938CarmeJupiter XINicholson[36]
i: 16. Februar 1948MirandaUranus VKuiper[37]
i: 1. Mai 1949NereidNeptun IIKuiper[38]
i: 28. Dezember 1951AnankeJupiter XIINicholson[39]
i: 15. Dezember 1966Janus*S/1966 S 2Saturn XDollfus (Dollfus sah entweder Janus oder Epimetheus)
i: 18. Dezember 1966Epimetheus*Saturn XIWalker

1971–1980

EntdeckungNameBenen-
nung
BildPlanet/Nummer
Benennung
Anmerkungen
i: 11. September 1974
p: 20. September 1974
LedaJupiter XIIIKowal[40]
i: 30. September 1975
p: 3. Oktober 1975
Themisto*S/1975 J 1Jupiter XVIIIKowal (Entdeckt, dann aber wieder verloren)
i: 13. April 1978
o: 22. Juni 1978
CharonS/1978 P 1Pluto IChristy[41]
i: 8. Juli 1979
p: 23. November 1979
AdrasteaS/1979 J 1Jupiter XVJewitt, Danielson / Voyager 2[42][43]
i: 19. Februar 1980Janus*S/1980 S 1Saturn X(Von Voyager 1 bestätigt)
i: 26. Januar 1980Epimetheus*S/1980 S 3Saturn XI(Von Voyager 1 bestätigt)
i: 1. März 1980HeleneS/1980 S 6Saturn XIILaques, Lecacheux
i: 13. März 1980CalypsoS/1980 S 25Saturn XIVPascu, Seidelmann, Baum, Currie
i: 8. April 1980TelestoS/1980 S 13Saturn XIIISmith, Reitsema, Larson, Fountain, Voyager 1
i: 5. März 1979
p: 28. April 1980
ThebeS/1979 J 2Jupiter XIVSynnott, Voyager 1
i: 4. März 1979
p: 26. August 1980
MetisS/1979 J 3Jupiter XVISynnott, Voyager 1
o: Oktober 1980AtlasS/1980 S 28Saturn XVTerrile, Voyager 1
PrometheusS/1980 S 27Saturn XVICollins, Voyager 1
PandoraS/1980 S 26Saturn XVIICollins, Voyager 1

1981–1990

EntdeckungNameBenen-
nung
BildPlanet/Nummer
Benennung
Anmerkungen
i: 30. Dezember 1985PuckS/1985 U 1Uranus XVSynnott, Voyager 2
i: 3. Januar 1986JulietS/1986 U 2Uranus XISynnott, Voyager 2
PortiaS/1986 U 1Uranus XIISynnott, Voyager 2
i: 9. Januar 1986CressidaS/1986 U 3Uranus IXSynnott, Voyager 2
i: 13. Januar 1986DesdemonaS/1986 U 6Uranus XSynnott, Voyager 2
RosalindS/1986 U 4Uranus XIIISynnott, Voyager 2
BelindaS/1986 U 5Uranus XIVSynnott, Voyager 2
i: 20. Januar 1986CordeliaS/1986 U 7Uranus VITerrile, Voyager 2
OpheliaS/1986 U 8
Uranus VIITerrile, Voyager 2
i: 23. Januar 1986BiancaS/1986 U 9Uranus VIIISmith, Voyager 2
i: 16. Juni 1989
p: 7. Juli 1989
ProteusS/1989 N 1Neptun VIIISynnott, Voyager 2
i: 28. Juli 1989
p: 2. August 1989
LarissaS/1989 N 2Neptun VIIReitsema, Hubbard, Lebofsky, Tholen, Voyager 2
DespinaS/1989 N 3Neptun VSynnott, Voyager 2
GalateaS/1989 N 4Neptun VISynnott, Voyager 2
i: 18. September 1989
p: 29. September 1989
ThalassaS/1989 N 5Neptun IVTerrile, Voyager 2
NaiadS/1989 N 6Neptun IIITerrile, Voyager 2
i: 22. August 1981
p: 16. Juli 1990
Pan*S/1981 S 13Saturn XVIIIShowalter, Voyager 2

1991–2000

EntdeckungNameBenen-
nung
BildPlanet/Nummer
Benennung
Anmerkungen
i: 23. August 1981
p: 14. April 1995
S/1981 S 14
siehe unten:
Methone
SaturnGordon, Murray und Beurle[44]
i: 6. September 1997
p: 31. Oktober 1997
CalibanS/1997 U 1Uranus XVIGladman, Nicholson, Burns, Kavelaars
SycoraxS/1997 U 2Uranus XVIIGladman, Nicholson, Burns, Kavelaars
i: 18. Januar 1986
p: 18. März 1999
PerditaS/1986 U 10*UranusKarkoschka, Voyager 2
i: 18. Juli 1999SetebosS/1999 U 1Uranus XIXKavelaars, Gladman, Holman, Petit, Scholl
StephanoS/1999 U 2Uranus XXGladman, Holman, Kavelaars, Petit, Scholl
ProsperoS/1999 U 3Uranus XVIIIHolman, Kavelaars, Gladman, Petit, Scholl
i: 6. Oktober 1999
o: 18. Juli
p: 20. Juli 2000
CallirrhoeS/1999 J 1Jupiter XVIIScotti, Spahr, McMillan, Larsen, Montani, Gleason, Gehrels
i: 7. August 2000YmirS/2000 S 1Saturn XIXGladman
PaaliaqS/2000 S 2Saturn XXGladman
KiviuqS/2000 S 5Saturn XXIVGladman
i: 23. September 2000SiarnaqS/2000 S 3Saturn XXIXGladman, Kavelaars
TarvosS/2000 S 4Saturn XXIKavelaars, Gladman
IjiraqS/2000 S 6Saturn XXIIKavelaars, Gladman
ThrymrS/2000 S 7Saturn XXXGladman, Kavelaars
SkathiS/2000 S 8Saturn XXVIIKavelaars, Gladman
MundilfariS/2000 S 9Saturn XXVGladman, Kavelaars
ErriapusS/2000 S 10Saturn XXVIIIKavelaars, Gladman
SuttungrS/2000 S 12Saturn XXIIIGladman, Kavelaars
9. November 2000
p: 19. Dezember 2000
AlbiorixS/2000 S 11Saturn XXVIHolman, Spahr
i: 21. November 2000
p: 25. November 2000
Themisto*S/2000 J 1Jupiter XVIIISheppard, Jewitt, Fernández, Magnier (Wiederentdeckt)

21. Jahrhundert

2001–2010

EntdeckungNameBenen-
nung
BildPlanet/Nummer
Benennung
Anmerkungen
i: 23. November 2000
p: 5. Januar 2001
KalykeS/2000 J 2Jupiter XXIIISheppard, Jewitt, Fernández, Magnier, Dahm, Evans
IocasteS/2000 J 3Jupiter XXIV
ErinomeS/2000 J 4Jupiter XXV
HarpalykeS/2000 J 5Jupiter XXII
IsonoeS/2000 J 6Jupiter XXVI
PraxidikeS/2000 J 7Jupiter XXVII
i: 25. November 2000
p: 5. Januar 2001
MegacliteS/2000 J 8Jupiter XIXSheppard, Jewitt, Fernández, Magnier, Dahm, Evans
TaygeteS/2000 J 9Jupiter XX
i: 26. November 2000
p: 5. Januar 2001
ChaldeneS/2000 J 10Jupiter XXISheppard, Jewitt, Fernández, Magnier, Dahm, Evans
i: 5. Dezember 2000
p: 5. Januar 2001
Dia*S/2000 J 11Jupiter LIIISheppard, Jewitt, Fernández, Magnier, Dahm, Evans
i: 9. Dezember 2001
p: 16. Mai 2002
HermippeS/2001 J 3Jupiter XXXSheppard, Jewitt, Kleyna
EurydomeS/2001 J 4Jupiter XXXII
SpondeS/2001 J 5Jupiter XXXVI
KaleS/2001 J 8Jupiter XXXVII
i: 10. Dezember 2001
p: 16. Mai 2002
AutonoeS/2001 J 1Jupiter XXVIIISheppard, Jewitt, Kleyna
i: 11. Dezember 2001
p: 16. Mai 2002
ThyoneS/2001 J 2Jupiter XXIXSheppard, Jewitt, Kleyna
PasitheeS/2001 J 6Jupiter XXXVIII
EuantheS/2001 J 7Jupiter XXXIII
OrthosieS/2001 J 9Jupiter XXXV
EuporieS/2001 J 10Jupiter XXXIV
AitneS/2001 J 11Jupiter XXXI
i: 13. August 2001
p: 30. September 2002
TrinculoS/2001 U 1Uranus XXIHolman, Kavelaars, Milisavljevic
i: 31. Oktober 2002
p: 18. Dezember 2002
ArcheS/2002 J 1Jupiter XLIIISheppard, Meech, Hsieh, Tholen, Tonry
i: 13. August 2002
p: 13. Januar 2003
LaomedeiaS/2002 N 3Neptun XIIHolman, Kavelaars, Grav, Fraser, Milisavljevic
i: 14. August 2002
p: 13. Januar 2003
HalimedeS/2002 N 1Neptun IXHolman, Kavelaars, Grav, Fraser, Milisavljevic
SaoS/2002 N 2Neptun XI
i: 5. Februar 2003
p: 4. März 2003
EukeladeS/2003 J 1Jupiter XLVIISheppard, Jewitt, Kleyna, Fernández, Hsieh
S/2003 J 2Jupiter
EuphemeS/2003 J 3Jupiter
S/2003 J 4Jupiter
i: 6. Februar 2003
p: 4. März 2003
EireneS/2003 J 5JupiterSheppard, Jewitt, Kleyna, Fernández, Hsieh
HelikeS/2003 J 6Jupiter XLV
i: 8. Februar 2003
p: 4. März 2003
AoedeS/2003 J 7Jupiter XLISheppard, Jewitt, Kleyna, Fernández, Hsieh
HegemoneS/2003 J 8Jupiter XXXIX
i: 6. Februar 2003
p: 7. März 2003
S/2003 J 9JupiterSheppard, Jewitt, Kleyna, Fernández
S/2003 J 10Jupiter
KallichoreS/2003 J 11Jupiter XLIV
i: 8. Februar 2003
p: 7. März 2003
S/2003 J 12JupiterSheppard, Jewitt, Kleyna, Fernández
i: 5. Februar 2003
p: 11. April 2003
NarviS/2003 S 1Saturn XXXISheppard, Jewitt, Kleyna
i: 9. Februar 2003
p: 11. April 2003
CylleneS/2003 J 13Jupiter XLVIIISheppard, Jewitt, Kleyna
i: 8. Februar 2003
p: 11. April 2003
KoreS/2003 J 14Jupiter XLIXSheppard, Jewitt, Kleyna
i: 6. Februar 2003
p: 11. April 2003
PhilophrosyneS/2003 J 15JupiterGladman, Sheppard, Jewitt, Kleyna, Kavelaars, Petit, Allen
S/2003 J 16
i: 8. Februar 2003
p: 11. April 2003
HerseS/2003 J 17Jupiter LGladman, Sheppard, Jewitt, Kleyna, Kavelaars, Petit, Allen
i: 6. Februar 2003
p: 11. April 2003
S/2003 J 18JupiterGladman, Kavelaars, Petit, Allen, Sheppard, Jewitt, Kleyna
i: 6. Februar 2003
p:30. April 2003
S/2003 J 19JupiterGladman, Sheppard, Jewitt, Kleyna, Kavelaars, Petit, Allen
i: 9. Februar 2003
p: 30. April 2003
CarpoS/2003 J 20Jupiter XLVISheppard, Gladman, Kavelaars, Petit, Allen, Jewitt, Kleyna
i: 6. Februar 2003
p: 30. Mai 2003
MnemeS/2003 J 21Jupiter XLSheppard, Jewitt, Kleyna, Gladman, Kavelaars, Petit, Allen
i: 13. August 2001
p: 29. August 2003
Ferdinand*S/2001 U 2Uranus XXIV2001: Holman, Kavelaars, Milisavljevic;
2003: Scott S. Sheppard, David C. Jewitt
i: 14. August 2002
p: 29. August 2003
Neso*S/2002 N 4Neptun XIIIHolman, Kavelaars, Grav, Fraser, Milisavljevic
i: 29. August 2003
p: 3. September 2003
PsamatheS/2003 N 1Neptun XJewitt, Kleyna, Sheppard, Holman, Kavelaars
i: 25. August 2003
p: 25. September 2003
MabS/2003 U 1Uranus XXVIShowalter, Lissauer
CupidS/2003 U 2Uranus XXVII
i: 13. August 2001
8. Oktober 2003
Francisco*S/2001 U 3Uranus XXIIHolman, Kavelaars, Milisavljevic, Gladman
i: 29. August 2003
p: 9. Oktober 2003
MargaretS/2003 U 3Uranus XXIIISheppard, Jewitt
i: 9. Februar 2003
p: 25. Januar 2004
Thelxinoe*S/2003 J 22Jupiter XLIISheppard, Jewitt, Kleyna, Gladman, Kavelaars, Petit, Allen (Von 2003 gemachten Bildern)
i: 6. Februar 2003
p: 4. Februar 2004
S/2003 J 23*JupiterSheppard, Jewitt, Kleyna, Fernández
i: 1. Juni 2004
p: 16. August 2004
MethoneS/2004 S 1
= S/1981 S 14?
Saturn XXXIIPorco, Charnoz, Brahic, Dones / Cassini-Huygens[45]
PalleneS/2004 S 2Saturn XXXIIIPorco, Charnoz, Brahic, Dones / Cassini-Huygens[45]
i: 21. Juni 2004
p: 9. September 2004
S/2004 S 3*SaturnMurray, Porco et al. / Cassini-Huygens[46]
i: 21. Juni 2004(?)
p: 9. September 2004
S/2004 S 4*SaturnSpitale, Porco et al. / Cassini-Huygens[46]
i: 21. Oktober 2004
o: 24. Oktober 2004
p: 8. November 2004
PolydeucesS/2004 S 5Saturn XXXIVPorco et al. / Cassini-Huygens
i: 28. Oktober 2004
p: 8. November 2004
S/2004 S 6*SaturnPorco et al. / Cassini-Huygens
i: 12. Dezember 2004
p: 4. Mai 2005
S/2004 S 7SaturnSheppard, Jewitt, Kleyna, Marsden[47]
FornjotS/2004 S 8Saturn XLII
FarbautiS/2004 S 9Saturn XL
AegirS/2004 S 10Saturn XXXVI
BebhionnS/2004 S 11Saturn XXXVII
S/2004 S 12Saturn
S/2004 S 13Saturn
HatiS/2004 S 14Saturn XLIII
BergelmirS/2004 S 15Saturn XXXVIII
i: 13. Dezember 2004
p: 4. Mai 2005
FenrirS/2004 S 16Saturn XLISheppard, Jewitt, Kleyna, Marsden[47]
S/2004 S 17Saturn
BestlaS/2004 S 18Saturn XXXIX
i: 1. Mai 2005
p: 6. Mai 2005
DaphnisS/2005 S 1Saturn XXXVPorco et al. / Cassini-Huygens
i: 21. Oktober 2003
o: 5. Januar 2005
p: 29. Juli 2005
Eris2003 UB313Zwergplanet (2006)Brown, Trujillo, Rabinowitz
i: 6. Mai 2004
o: 28. Dez 2004
p: 29. Juli 2005
Haumea2003 EL61Zwergplanet (2008)Brown, Trujillo, Rabinowitz
o: 26. Januar 2005
p: 29. Juli 2005
HiʻiakaS/2005 (136108) 1Haumea IBrown, Trujillo, Rabinowitz
i: 31. März 2005
p: 29. Juli 2005
Makemake2005 FY9Zwergplanet (2008)Brown, Trujillo, Rabinowitz
o: 30. Juni 2005
p: 29. Juli 2005
NamakaS/2005 (136108) 2Haumea IIBrown, Trujillo, Rabinowitz
i: 10. September 2005
p: 3. Oktober 2005
DysnomiaS/2005
(2003 UB313) 1
Eris IBrown, Trujillo, van Dam, Bouchez, Le Mignant, Campbell, Chin, Conrad, Hartman, Johansson, Lafon, Rabinowitz, Stomski, Summers, Wizinowich[48]
i: 15. Mai 2005
o: 15. Juni 2005
p: 31. Oktober 2005
HydraS/2005 P 1Pluto IIIWeaver, Stern, Mutchler, Steffl, Buie, Merline,
Spencer, Young, Young
NixS/2005 P 2Pluto II
i: 12. Dezember 2004
o: 6. März 2006(?)
p: 26. Juni 2006
HyrrokkinS/2004 S 19Saturn XLIVSheppard, Jewitt, Kleyna[49]
i: 4. Januar 2006
o: 6. März 2006(?)
p: 26. Juni 2006
S/2006 S 1SaturnSheppard, Jewitt, Kleyna[49]
KariS/2006 S 2 Saturn XLV
i: 5. Januar 2006
o: 6. März 2006 (?)
p: 26. Juni 2006
S/2006 S 3Saturn
GreipS/2006 S 4Saturn LI
LogeS/2006 S 5Saturn XLVI
JarnsaxaS/2006 S 6Saturn L
SurturS/2006 S 7Saturn XLVIII
SkollS/2006 S 8Saturn XLVII
i: 5. Januar 2006
o: 16. Januar 2007 (?)
p: 13. April 2007
TarqeqS/2007 S 1Saturn LIISheppard, Jewitt, Kleyna
i: 18. Januar 2007
o:
p: 1. Mai 2007
S/2007 S 2SaturnSheppard, Jewitt, Kleyna
S/2007 S 3Saturn
i: Juni 2004
o: 30. Mai 2007
p: 18. Juli 2007
AntheS/2007 S 4Saturn XLIXCassini Imaging Science Team[50]
i: 15. August 2008
p: 3. März 2009
AegaeonS/2008 S 1Saturn LIIICassini Imaging Science Team[51]
i: 26. Juli 2009
p: 2. November 2009
S/2009 S 1SaturnCassini Imaging Science Team[52]

Seit 2011

EntdeckungNameBenen-
nung
BildPlanet/Nummer
Benennung
Anmerkungen
i: 7. Sep. 2010
p: 1. Juni 2011
S/2010 J 1Jupiter LIJacobson, Brozović, Gladman and Alexandersen[53]
S/2010 J 2Jupiter LIIVeillet[53]
i: 28. Juni 2011
p: 20. Juli 2011
KerberosS/2011 (134340) 1Pluto IVShowalter et al.[54]
i: 27. Sep. 2011
p: 29. Jan. 2012
S/2011 J 1Jupiter LXXIISheppard[55]
S/2011 J 2Jupiter LVI
i: 7. Juli 2012
p: 11. Juli 2012
StyxS/2012 (134340) 1Pluto VShowalter et al.[56]
i: 19. August 2009
p: 15. Juli 2013
HippocampS/2004 N 1Neptun XIVShowalter et al.[57]
i: April 2015
p: 26. April 2016
S/2015 (136472) 1Makemake[58]
i: März 2016
p: Juni 2017
S/2016 J 1Jupiter LIVSheppard et al.[59]
S/2017 J 1Jupiter LIX
i: März 2016
p: 17. Juli 2018
ValetudoS/2016 J 2Jupiter LXIISheppard et al.[60]
i: Februar 2016
p: 17. Juli 2018
S/2017 J 2Jupiter LXIIISheppard et al.[61]
i: Februar 2016
p: 17. Juli 2018
S/2017 J 3Jupiter LXIVSheppard et al.[62]
i: März 2017
p: 17. Juli 2018
PandiaS/2017 J 4Jupiter LXVSheppard et al.[63]
i: März 2017
p: 17. Juli 2018
S/2017 J 5Jupiter LXVISheppard et al.[64]
i: Februar 2017
p: 17. Juli 2018
S/2017 J 6Jupiter LXVIISheppard et al.[65]
i: Februar 2017
p: 17. Juli 2018
S/2017 J 7Jupiter LXVIIISheppard et al.[66]
i: März 2017
p: 17. Juli 2018
S/2017 J 8Jupiter LXIXSheppard et al.[67]
i: Februar 2017
p: 17. Juli 2018
S/2017 J 9Jupiter LXXSheppard et al.[68]
i: März 2017
p: 17. Juli 2018
ErsaS/2018 J 1Jupiter LXXISheppard et al.[69]
i: Dezember 2004
p: 7. Oktober 2019
GridrS/2004 S 20SaturnSheppard et al.[70]
i: Dezember 2004
p: 7. Oktober 2019
S/2004 S 21SaturnSheppard et al.[71]
i: Dezember 2004
p: 7. Oktober 2019
AngrbodaS/2004 S 22SaturnSheppard et al.[72]
i: Dezember 2004
p: 7. Oktober 2019
SkrymirS/2004 S 23SaturnSheppard et al.[73]
i: Dezember 2004
p: 7. Oktober 2019
S/2004 S 24SaturnSheppard et al.[74]
i: Dezember 2004
p: 7. Oktober 2019
GerdS/2004 S 25SaturnSheppard et al.[75]
i: Dezember 2004
p: 7. Oktober 2019
S/2004 S 26SaturnSheppard et al.[76]
i: Dezember 2004
p: 7. Oktober 2019
EggtherS/2004 S 27SaturnSheppard et al.[77]
i: Dezember 2004
p: 7. Oktober 2019
S/2004 S 28SaturnSheppard et al.[78]
i: Dezember 2004
p: 7. Oktober 2019
S/2004 S 29SaturnSheppard et al.[79]
i: Dezember 2004
p: 7. Oktober 2019
BeliS/2004 S 30SaturnSheppard et al.[80]
i: Dezember 2004
p: 8. Oktober 2019
S/2004 S 31SaturnSheppard et al.[81]
i: Dezember 2004
p: 8. Oktober 2019
GunnlodS/2004 S 32SaturnSheppard et al.[82]
i: Dezember 2004
p: 8. Oktober 2019
ThiazziS/2004 S 33SaturnSheppard et al.[83]
i: Dezember 2004
p: 8. Oktober 2019
S/2004 S 34SaturnSheppard et al.[84]
i: Dezember 2004
p: 8. Oktober 2019
AlvaldiS/2004 S 35SaturnSheppard et al.[85]
i: Dezember 2004
p: 8. Oktober 2019
S/2004 S 36SaturnSheppard et al.[86]
i: Dezember 2004
p: 8. Oktober 2019
S/2004 S 37SaturnSheppard et al.[87]
i: Dezember 2004
p: 8. Oktober 2019
GeirrodS/2004 S 38SaturnSheppard et al.[88]
i: Dezember 2004
p: 8. Oktober 2019
S/2004 S 39SaturnSheppard et al.[89]
i: Juli 2019
p: 16. November 2021
S/2019 S 1SaturnEdward Ashton et al.[90]

Siehe auch

Weblinks

Einzelnachweise

  1. The Cosmotheoros of Christiaan Huygens (1698)
  2. bibcode:1781RSPT...71..492H
  3. Account of a Comet, By Mr. Herschel, F. R. S.; Communicated by Dr. Watson, Jun. of Bath, F. R. S., Philosophical Transactions of the Royal Society of London, Volume 71, pp. 492-501.
  4. cosmovisions.com
  5. bibcode:1846MNRAS...7...27H
  6. adsabs.harvard.edu
  7. adsabs.harvard.edu
  8. bibcode:1848MNRAS...8..103H
  9. adsabs.harvard.edu
  10. adsabs.harvard.edu
  11. adsabs.harvard.edu
  12. adsabs.harvard.edu
  13. adsabs.harvard.edu
  14. adsabs.harvard.edu
  15. adsabs.harvard.edu
  16. adsabs.harvard.edu
  17. adsabs.harvard.edu
  18. adsabs.harvard.edu
  19. adsabs.harvard.edu
  20. adsabs.harvard.edu
  21. adsabs.harvard.edu
  22. adsabs.harvard.edu
  23. adsabs.harvard.edu
  24. adsabs.harvard.edu
  25. adsabs.harvard.edu
  26. adsabs.harvard.edu
  27. adsabs.harvard.edu
  28. adsabs.harvard.edu
  29. bibcode:1905BHarO.189....1P
  30. bibcode:1905AnHar..53..173P
  31. adsabs.harvard.edu
  32. bibcode:1908MNRAS..68..373.
  33. adsabs.harvard.edu
  34. bibcode:1946ASPL....5...73T
  35. adsabs.harvard.edu
  36. adsabs.harvard.edu
  37. adsabs.harvard.edu
  38. adsabs.harvard.edu
  39. adsabs.harvard.edu
  40. adsabs.harvard.edu
  41. bibcode:1978AJ.....83.1005C
  42. bibcode:1979Sci...206..951J
  43. ringmaster.arc.nasa.gov: Voyager 2 Jupiter Image 20630.53 (Memento vom 13. August 2004 im Internet Archive)
  44. icarus.cornell.edu: ICARUS: Volume 121, Number 1, May 1996 (Memento vom 5. Februar 2012 im Internet Archive)
  45. a b Out from the Shadows: Two New Saturnian Moons (Memento vom 8. August 2008 im Internet Archive). JPL-Pressemeldung vom 16. August 2004
  46. a b Cassini Discovers Ring and One, Possibly Two, Objects at Saturn. (Memento vom 21. Oktober 2006 im Internet Archive) JPL-Pressemeldung vom 9. September 2004
  47. a b Twelve new moons for Saturn – 2005 May 03 (Memento vom 11. Mai 2005 im Internet Archive)
  48. gps.caltech.edu: Dysnomia, the moon of Eris
  49. a b ifa.hawaii.edu: Nine New Satellites of Saturn (Memento vom 1. September 2006 im Internet Archive)
  50. Saturn Turns 60. NASA, 31. August 2018, abgerufen am 19. Juli 2023 (englisch).
  51. Central Bureau for Astronomical Telegrams: S/2008 S 1. In: Circular No. 9023. 3. März 2009, abgerufen am 19. Juli 2023 (englisch).
  52. Central Bureau for Astronomical Telegrams: S/2009 S 1. In: Circular No. 9091. 2. November 2009, abgerufen am 19. Juli 2023 (englisch).
  53. a b MPEC 2011-L06: S/2010 J 1 AND S/2010 J 2
  54. cbat.eps.harvard.edu
  55. MPEC 2012-B97 : S/2011 J 1 AND S/2011 J 2 2012 Jan. 29 (issued)
  56. hubblesite.org
  57. hubblesite.org
  58. NASA – Hubble Discovers Moon Orbiting the Dwarf Planet Makemake
  59. Two New Moons of Jupiter Discovered
  60. MPEC 2018-O09 : S/2016 J 2
  61. MPEC 2018-O10 : S/2017 J 2
  62. MPEC 2018-O11 : S/2017 J 3
  63. MPEC 2018-O12 : S/2017 J 4
  64. MPEC 2018-O13 : S/2017 J 5
  65. MPEC 2018-O14 : S/2017 J 6
  66. MPEC 2018-O15 : S/2017 J 7
  67. MPEC 2018-O16 : S/2017 J 8
  68. MPEC 2018-O17 : S/2017 J 9
  69. MPEC 2018-O18 : S/2018 J 1
  70. MPEC 2019-T126 : S/2004 S 20
  71. MPEC 2019-T127 : S/2004 S 21
  72. MPEC 2019-T128 : S/2004 S 22
  73. MPEC 2019-T129 : S/2004 S 23
  74. MPEC 2019-T131 : S/2004 S 24
  75. MPEC 2019-T132 : S/2004 S 25
  76. MPEC 2019-T133 : S/2004 S 26
  77. MPEC 2019-T134 : S/2004 S 27
  78. MPEC 2019-T135 : S/2004 S 28
  79. MPEC 2019-T136 : S/2004 S 29
  80. MPEC 2019-T140 : S/2004 S 30
  81. MPEC 2019-T153 : S/2004 S 31
  82. MPEC 2019-T154 : S/2004 S 32
  83. MPEC 2019-T155 : S/2004 S 33
  84. MPEC 2019-T156 : S/2004 S 34
  85. MPEC 2019-T157 : S/2004 S 35
  86. MPEC 2019-T158 : S/2004 S 36
  87. MPEC 2019-T159 : S/2004 S 37
  88. MPEC 2019-T160 : S/2004 S 38
  89. MPEC 2019-T161 : S/2004 S 39
  90. : MPEC 2021-W14

Auf dieser Seite verwendete Medien

The Earth seen from Apollo 17.jpg
Blue Marble“, die während des Fluges von Apollo 17 zum Mond am 7. Dezember 1972 entstandene Fotoaufnahme von der Erde
Juno 4 wavelengths.jpg
(c) Harvard-Smithsonian Center for Astrophysics, CC BY-SA 3.0
Images of asteroid 3 Juno taken with the 100-inch Hooker telescope at Mt. Wilson Observatory show what appears to be a 60-mile-wide crater. The crater is visible as a darkened area in the lower left quadrant in the 833 nm and 934 nm images. The material excavated by the collision that produced the crater "bite" has low reflectance, especially at the wavelength of 934 nm. An adaptive optics system provided a remarkably clear view of Juno's surface by reducing interference from the Earth's atmosphere. (Sallie Baliunas et al. Release date August 6, 2003)
Dawn-image-070911.jpg
Vesta aufgenommen von Dawn am 9.7.11 aus 41.000km
Pluto by LORRI and Ralph, 13 July 2015.jpg
Pluto photographed by the LORRI and Ralph instruments aboard the New Horizons spacecraft
Ganymede g1 true.jpg
True color image of Ganymede, obtained by the Galileo spacecraft, with enhanced contrast.

Here is the description from JPL's web entry for PIA00716:

Natural color view of Ganymede from the Galileo spacecraft during its first encounter with the satellite. North is to the top of the picture and the sun illuminates the surface from the right. The dark areas are the older, more heavily cratered regions and the light areas are younger, tectonically deformed regions. The brownish-gray color is due to mixtures of rocky materials and ice. Bright spots are geologically recent impact craters and their ejecta. The finest details that can be discerned in this picture are about 13.4 kilometers across. The images which combine for this color image were taken beginning at Universal Time 8:46:04 UT on June 26, 1996.

The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo.
Thebe.jpg
This image of Thebe was taken by NASA's Galileo spacecraft on January 4, 2000, at a range of 193,000 kilometers.
Saturn (planet) large.jpg
This true color picture was assembled from Voyager 2 Saturn images obtained Aug. 4 [1981] from a distance of 21 million kilometers (13 million miles) on the spacecraft's approach trajectory. Three of Saturn's icy moons are evident at left. They are, in order of distance from the planet: Tethys, 1,050 km. (652 mi.) in diameter; Dione, 1,120 km. (696 mi.); and Rhea, 1,530 km. (951 mi.). The shadow of Tethys appears on Saturn's southern hemisphere. A fourth satellite, Mimas, is less evident, appearing as a bright spot a quarter-inch in in from the planet's limb about half an inch above Tethys; the shadow of Mimas appears on the planet about three-quarters of an inch directly above that of Tethys. The pastel and yellow hues on the planet reveal many contrasting bright and darker bands in both hemispheres of Saturn's weather system. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California, United States.
Calypso crop resize sharp.jpg
This raw, unprocessed image of Calypso was taken by Cassini on Feb. 13, 2010.

The image was taken with the Cassini spacecraft narrow-angle camera on Feb. 13, 2010 using a spectral filter sensitive to wavelengths of ultraviolet light centered at 338 nanometers. The view was obtained at a distance of approximately 23,000 kilometers (14,000 miles) from Calypso. Image scale is 135 meters (443 feet) per pixel.

The Cassini Equinox Mission is a joint United States and European endeavor. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The imaging team consists of scientists from the US, England, France, and Germany. The imaging operations center and team lead (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini Equinox Mission visit http://ciclops.org, http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.

The original NASA image has been modified by cropping, doubling the linear pixel density, sharpening and removal of a cosmic ray artifact.
S1986U10 zoom.png
Portion de l'image S1986U10.jpg avec quatre lunes uraniennes identifiées, dont fr:S/1986 U 10

Image de la lune uranienne S/1986 U 10 saise par le télescope spatial Hubble le 25 août 2003

Source : NASA

http://www.solarviews.com/cap/uranus/1986u10.htm
Kerberos (moon).jpg
Four combined images of Kerberos taken by the Long Range Reconnaissance Imager (LORRI) instrument on 14 July, approximately 7 hours before New Horizons’ closest approach to Pluto and at a distance of 396 100 km from Kerberos.
Mars Valles Marineris.jpeg
Global mosaic of 102 Viking 1 Orbiter images of Mars taken on orbit 1,334, 22 February 1980. The images are projected into point perspective, representing what a viewer would see from a spacecraft at an altitude of 2,500 km. At center is Valles Marineris, over 3000 km long and up to 8 km deep. Note the channels running up (north) from the central and eastern portions of Valles Marineris to the area at upper right, Chryse Planitia. At left are the three Tharsis Montes and to the south is ancient, heavily impacted terrain. (Viking 1 Orbiter, MG07S078-334SP)
Some of the features in this mosaic are annotated in Wikimedia Commons.
Thalassa.jpg
Naiad from Voyager 2
Metis.jpg
Jovian satellite Metis, imaged by the Galileo spacecraft
Io highest resolution true color.jpg
Original Caption Released with Image:

NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera and approximates what the human eye would see. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A false color version of the mosaic has been created to enhance the contrast of the color variations.

The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout A of false color image). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B of false color image). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C of false color image). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D of false color image). In this region bright, white material can also be seen to emanate from linear rifts and cliffs.

Comparison of this image to previous Galileo images reveals many changes due to the ongoing volcanic activity.

Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here.

North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit.

The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo.
Ceres RC1 single frame by Dawn, 12 February 2015.jpg
Ceres photographed by Dawn from about 80 000 km.
Enceladus from Voyager.jpg
This color Voyager 2 image mosaic shows the water-ice-covered surface of Enceladus, one of Saturn's icy moons. Enceladus' diameter of just 500 km would fit across the state of Arizona, yet despite its small size Enceladus exhibits one of the most interesting surfaces of all the icy satellites. Enceladus reflects about 90% of the incident sunlight (about like fresh-fallen snow), placing it among the most reflective objects in the Solar System. Several geologic terrains have superposed crater densities that span a factor of at least 500, thereby indicating huge differences in the ages of these terrains. It is possible that the high reflectivity of Enceladus' surface results from continuous deposition of icy particles from Saturn's E-ring, which in fact may originate from icy volcanoes on Enceladus' surface. Some terrains are dominated by sinuous mountain ridges from 1 to 2 km high (3300 to 6600 feet), whereas other terrains are scarred by linear cracks, some of which show evidence for possible sideways fault motion such as that of California's infamous San Andreas fault. Some terrains appear to have formed by separation of icy plates along cracks, and other terrains are exceedingly smooth at the resolution of this image. The implication carried by Enceladus' surface is that this tiny ice ball has been geologically active and perhaps partially liquid in its interior for much of its history. The heat engine that powers geologic activity here is thought to be elastic deformation caused by tides induced by Enceladus' orbital motion around Saturn and the motion of another moon, Dione.
PIA18185 Miranda's Icy Face.jpg
Uranus' icy moon Miranda is seen in this image from Voyager 2 on January 24, 1986. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Sun920607.jpg
Die Sonne mit Sonnenflecken. Die zwei kleinen Sonnenflecken in der Mitte haben ungefähr den gleichen Durchmesser wie unser Planet Erde.
Callisto.jpg
Bright scars on a darker surface testify to a long history of impacts on Jupiter's moon Callisto in this image of Callisto from NASA's Galileo spacecraft. The picture, taken in May 2001, is the only complete global color image of Callisto obtained by Galileo, which has been orbiting Jupiter since December 1995. Of Jupiter's four largest moons, Callisto orbits farthest from the giant planet. Callisto's surface is uniformly cratered but is not uniform in color or brightness. Scientists believe the brighter areas are mainly ice and the darker areas are highly eroded, ice-poor material.
Deimos-viking1.jpg
Viking 2 Orbiter image of the Martian satellite Deimos taken from 1400 km. Deimos appears smooth, but higher resolution images taken during closer approaches show the surface is covered with craters, but many of these have been partially buried or subdued by regolith. Deimos is about 14 km from top to bottom in this image.
Helene over Saturn.jpg
A photo taken by the Cassini spacecraft showing Saturn's moon Helene with the atmosphere of the planet in the background. The image was taken in visible light with the Cassini spacecraft narrow-angle camera. The view was acquired at a distance of approximately 19,000 kilometers (12,000 miles) from Helene.
N00163156.jpg
N00163156.jpg was taken on September 13, 2010 and received on Earth September 15, 2010. The camera was pointing toward PALLENE, and the image was taken using the CL1 and CL2 filters. This image has not been validated or calibrated. A validated/calibrated image will be archived with the NASA Planetary Data System in 2011
Titan Visible.jpg
Saturn's large, smog-enshrouded moon Titan greets Cassini in full natural color as the spacecraft makes its third close pass on Feb. 15, 2005. This view has been rotated so that north on Titan is up. There is a slight difference in brightness from north to south, a seasonal effect that was noted in NASA's Voyager spacecraft images, and is clearly visible in some infrared images from Cassini. The northern polar region is largely in darkness at this time. This image was taken with the Cassini spacecraft wide angle camera through using red, green and blue spectral filters were combined to create this natural color view. The image was acquired at a distance of approximately 229,000 kilometers (142,000 miles) from Titan and at a Sun-Titan-spacecraft, or phase, angle of 20 degrees. Resolution in the image is about 14 kilometers (9 miles) per pixel.
Triton moon mosaic Voyager 2 (large).jpg
Globales Farbmosaik von Triton, 1989 aufgenommen durch Voyager 2
Venus-real color.jpg
Venus in real colors, processed from clear and blue filtered Mariner 10 images.

Source images are in the public domain (NASA)

Images processed by Ricardo Nunes, downloaded from http://www.astrosurf.com/nunes/explor/explor_m10.htm
Voyager 2 picture of Oberon.jpg
Original Caption Released with Image: This Voyager 2 picture of Oberon is the best the spacecraft acquired of Uranus' outermost moon. The picture was taken shortly after 3:30 a.m. PST on Jan. 24, 1986, from a distance of 660,000 kilometers (410,000 miles). The color was reconstructed from images taken through the narrow-angle camera's violet, clear and green filters. The picture shows features as small as 12 km (7 mi) on the moon's surface. Clearly visible are several large impact craters in Oberon's icy surface surrounded by bright rays similar to those seen on Jupiter's moon Callisto. Quite prominent near the center of Oberon's disk is a large crater with a bright central peak and a floor partially covered with very dark material. This may be icy, carbon-rich material erupted onto the crater floor sometime after the crater formed. Another striking topographic feature is a large mountain, about 6 km (4 mi) high, peeking out on the lower left limb. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Despina.jpg
Despina as seen by Voyager 2. There is significant horizontal smearing due to the combination of long exposure needed at this distance from the Sun, and the rapid relative motion of the moon and Voyager.
Amalthea PIA02532.png
Amalthea, as photographed by the Galileo spacecraft. The left photograph is from August 12, 1999 at a range of 446,000 kilometers. The right photo is from November 26, 1999 at a range of 374,000.
Iapetus 706 1419 1.jpg
Mosaic of Iapetus images taken by the Cassini spacecraft, Dec. 31, 2004. Photomosaic assembled by Matt McIrvin.
Uranus.jpg
This image of Uranus was compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. The spacecraft was 9.1 million kilometers (5.7 million miles) from the planet, several days from closest approach. This picture has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The picture is a composite of images taken through blue, green and orange filters. The darker shadings at the upper right of the disk correspond to the day-night boundary on the planet. Beyond this boundary lies the hidden northern hemisphere of Uranus, which currently remains in total darkness as the planet rotates. The blue-green color results from the absorption of red light by methane gas in Uranus' deep, cold and remarkably clear atmosphere.
Nh-charon.jpg
Charon, taken by New Horizons on 13 July 2015 from a distance of 466 000 kilometers
Umbriel (moon).jpg
Original Caption Released with Image: The southern hemisphere of Umbriel displays heavy cratering in this Voyager 2 image, taken Jan. 24, 1986, from a distance of 557,000 kilometers (346,000 miles). This frame, taken through the clear-filter of Voyager's narrow-angle camera, is the most detailed image of Umbriel, with a resolution of about 10 km (6 mi). Umbriel is the darkest of Uranus' larger moons and the one that appears to have experienced the lowest level of geological activity. It has a diameter of about 1,200 km (750 mi) and reflects only 16 percent of the light striking its surface; in the latter respect, Umbriel is similar to lunar highland areas. Umbriel is heavily cratered but lacks the numerous bright ray craters seen on the other large Uranian satellites; this results in a relatively uniform surface albedo (reflectivity). The prominent crater on the terminator (upper right) is about 110 km (70 mi) across and has a bright central peak. The strangest feature in this image (at top) is a curious bright ring, the most reflective area seen on Umbriel. The ring is about 140 km (90 miles) in diameter and lies near the satellite's equator. The nature of the ring is not known, although it might be a frost deposit, perhaps associated with an impact crater. Spots against the black background are due to 'noise' in the data. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Adrastea.jpg
Adrastea—the moon of Jupiter by Galileo
Not the mother of meteorites.jpg
Autor/Urheber: ESO/M. Marsset, Lizenz: CC BY 4.0
The region between Mars and Jupiter is teeming with rocky worlds called asteroids. This asteroid belt is estimated to contain millions of small rocky bodies, and between 1.1 and 1.9 million larger ones spanning over one kilometre across. Small fragments of these bodies often fall to Earth as meteorites. Interestingly, 34% of all meteorites found on Earth are of one particular type: H-chondrites. These are thought to have originated from a common parent body — and one potential suspect is the asteroid 6 Hebe, shown here.

Approximately 186 kilometres in diameter and named for the Greek goddess of youth, 6 Hebe was the sixth asteroid ever to be discovered. These images were taken during a study of the mini-world using the SPHERE instrument on ESO’s Very Large Telescope, which aimed to test the idea that 6 Hebe is the source of H-chondrites.

Astronomers modelled the spin and 3D shape of 6 Hebe as reconstructed from the observations, and used their 3D model to determine the volume of the largest depression on 6 Hebe — likely an impact crater from a collision that could have created numerous daughter meteorites. However, the volume of the depression is five times smaller than the total volume of nearby asteroid families with H-chondrite composition, which suggests that 6 Hebe is not the most likely source of H-chondrites after all.

Links:

Themis orbit.gif
Two possible orbits for the non-existent "tenth satellite" Themis of Saturn, as calculated by William Henry Pickering
Nereid-Voyager2.jpg
衛星ネレイド、ボイジャー2号の撮影
PIA09813 Epimetheus S. polar region.jpg

The Cassini spacecraft's close flyby of Epimetheus in December 2007 returned detailed images of the moon's south polar region.

The view shows what might be the remains of a large impact crater covering most of this face, and which could be responsible for the somewhat flattened shape of the southern part of Epimetheus (116 kilometers, or 72 miles across) seen previously at much lower resolution.

The image also shows two terrain types: darker, smoother areas, and brighter, slightly more yellowish, fractured terrain. One interpretation of this image is that the darker material evidently moves down slopes, and probably has a lower ice content than the brighter material, which appears more like "bedrock." Nonetheless, materials in both terrains are likely to be rich in water ice.

The images that were used to create this enhanced color view were taken with the Cassini spacecraft narrow-angle camera on Dec. 3, 2007. The views were obtained at a distance of approximately 37,400 kilometers (23,000 miles) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 65 degrees. Image scale is 224 meters (735 feet) per pixel.

The Cassini–Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini–Huygens mission visit http://saturn.jpl.nasa.gov/home/index.cfm. The Cassini imaging team homepage is at http://ciclops.org.

The NASA image has been cropped.
Rhea hi-res PIA07763.jpg
original description: This giant mosaic reveals Saturn's icy moon Rhea in her full, crater-scarred glory. This view consists of 21 clear-filter images and is centered at 0.4 degrees south latitude, 171 degrees west longitude.
Jupiter.jpg
Original Caption Released with Image: This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager image captured in 1979. The colors have been enhanced to bring out detail. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. The clouds travel around the planet in alternating eastward and westward belts at speeds of up to 540 kilometers per hour. Tremendous storms as big as Earthly continents surge around the planet. The Great Red Spot (oval shape toward the lower-left) is an enormous anticyclonic storm that drifts along its belt, eventually circling the entire planet.
Daphnis raw 2010 cropped.jpg
This image was taken on July 05, 2010 and received on Earth July 06, 2010. The camera was pointing toward DAPHNIS, and the image was taken using the CL1 and CL2 filters. This image has not been validated or calibrated. A validated/calibrated image will be archived with the NASA Planetary Data System in 2011.
Nix best view.jpg
Processed image of Nix
Polydeuces.jpg
Polydeuces, moon of Saturn
Uranus' moon puck.gif
Autor/Urheber: NASA, Lizenz: CC BY-SA 3.0
Heavily processed version of image taken by the Voyager 2 spacecraft on January 24th, 1986, from a distance of 493,000 km. The satellite is about 130 km across in this image and the rotation axis is vertical.
Larissa.jpg
These Voyager 2 images of satellite Larissa at a resolution of 4.2 kilometers (2.6 miles) per pixel reveal it to be and irregularly shaped, dark object. The satellite appears to have several craters 30 to 50 kilometers (18.5 to 31 miles) across. The irregular outline suggests that this moon has remained cold and rigid throughout much of its history. It is about 210 by 190 kilometers (130 by 118 miles), about half the size of Proteus. It has a low albedo surface reflecting about 5 percent of the incident light. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.
Naiad.jpg
Naiad as seen by Voyager 2. The image is smeared due to the combination of long exposure needed at this distance from the Sun, and the rapid relative motion of the moon and Voyager. Hence, the moon appears more elongated than in reality.
Proteus Voyager 2 (big).jpg

This image of Neptune's satellite 1989N1 was obtained on Aug. 25, 1989 from a range of 146,000 kilometers (91,000 miles) by Voyager 2. The resolution is about 2.7 kilometers (1.7 miles) per line pair. The satellite, seen here about half-illuminated, has an average radius of some 200 kilometers (120 miles). It is dark (albedo 6 percent) and spectrally grey. Hints of crater-like forms and groove-like lineations can be discerned. The apparent graininess of the image is caused by the short exposure necessary to avoid significant smear. The Voyager Mission is conducted by JPL for NASA's Office of Space

Science and Applications.
Styx (moon).jpg
Image(s) of Styx taken by the Long Range Reconnaissance Imager (LORRI) on 13 July, approximately 12.5 hours before New Horizons’ closest approach to Pluto.
Hyperion PIA07740.jpg
original description: This stunning false-color view of Saturn's moon Hyperion reveals crisp details across the strange, tumbling moon's surface. Differences in color could represent differences in the composition of surface materials. The view was obtained during Cassini's close flyby on Sept. 26, 2005. Hyperion has a notably reddish tint when viewed in natural color. The red color was toned down in this false-color view, and the other hues were enhanced, in order to make more subtle color variations across Hyperion's surface more apparent. Images taken using infrared, green and ultraviolet spectral filters were combined to create this view. The images were taken with the Cassini spacecraft's narrow-angle camera at a distance of approximately 62,000 kilometers (38,500 miles) from Hyperion and at a Sun-Hyperion-spacecraft, or phase, angle of 52 degrees. The image scale is 362 meters (1,200 feet) per pixel. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
PIA12593 Prometheus2.jpg
Cassini spacecraft image of Prometheus, one of Saturn's small inner moons. Appearing like eyes on a potato, craters cover the dimly lit surface of the moon Prometheus in this high-resolution image from Cassini's early 2010 flyby.

The Jan. 27 encounter represented the closest imaging sequence yet of that moon for Cassini. This view looks toward the trailing hemisphere of Prometheus (86 kilometers, 53 miles across). North on Prometheus is up and rotated 8 degrees to the right.

The moon is lit by sunlight on the right and Saturnshine on the left.

The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 27, 2010. The view was obtained at a distance of approximately 34,000 kilometers (21,000 miles) from Prometheus and at a Sun-Prometheus-spacecraft, or phase, angle of 126 degrees. Image scale is 200 meters (658 feet) per pixel.

The Cassini Equinox Mission is a joint United States and European endeavor. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The imaging team consists of scientists from the US, England, France, and Germany. The imaging operations center and team lead (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini Equinox Mission visit http://ciclops.org, http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.

The original NASA image has been modified by cropping and brightening shadows. A version in which shadows are brightened less is here.
Cassini Atlas N00084634 CL.png
Narrow Angle Camera image of Atlas. Adapted from source images. Imaged from 181,000 km with clear filters, about 1km per pixel.
Pan side view.jpg
Paraphrased extract from the image's caption: en:Saturn's small, walnut-shaped moon, Pan, embedded in the planet's rings, coasts along in this image from the en:Cassini spacecraft. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on en:April 29, en:2006, at a distance of approximately 209,000 kilometers (130,000 miles) from Pan. The image scale is approximately 1 kilometer (0.6 miles) per pixel.
Neptune.jpg
Der Planet Neptun, aufgenommen von der Raumsonde Voyager 2 im August 1989
Hydra imaged by LORRI from 231 000 kilometres.jpg
Hydra imaged by the LORRI instrument aboard the New Horizons spacecraft on 14 July.
Galatea moon.jpg
Galatea as seen by Voyager 2. The image is smeared due to the combination of long exposure needed at this distance from the Sun, and the rapid relative motion of Galatea and Voyager. Hence, Galatea appears more elongated than in reality.
Ariel (moon).jpg
This mosaic of the four highest-resolution images of Ariel represents the most detailed Voyager 2 picture of this satellite of Uranus. The images were taken through the clear filter of Voyager's narrow-angle camera on Jan. 24, 1986, at a distance of about 130,000 kilometers (80,000 miles). Ariel is about 1,200 km (750 mi) in diameter; the resolution here is 2.4 km (1.5 mi). Much of Ariel's surface is densely pitted with craters 5 to 10 km (3 to 6 mi) across. These craters are close to the threshold of detection in this picture. Numerous valleys and fault scarps crisscross the highly pitted terrain. Voyager scientists believe the valleys have formed over down-dropped fault blocks (graben); apparently, extensive faulting has occurred as a result of expansion and stretching of Ariel's crust. The largest fault valleys, near the terminator at right, as well as a smooth region near the center of this image, have been partly filled with deposits that are younger and less heavily cratered than the pitted terrain. Narrow, somewhat sinuous scarps and valleys have been formed, in turn, in these young deposits. It is not yet clear whether these sinuous features have been formed by faulting or by the flow of fluids.
Mercury-real color.jpg

Mercury in real colors, processed from clear and blue filtered Mariner 10 images.
Pandora PIA07632.jpg
NASA description:
Cassini acquired infrared, green and ultraviolet images on Sept. 5, 2005, which were combined to create this false-color view. The image was taken with the Cassini spacecraft narrow-angle camera at a distance of approximately 52,000 kilometers (32,000 miles) from Pandora and at a Sun-Pandora-spacecraft, or phase, angle of 54 degrees. Resolution in the original image was about 300 meters (1,000 feet) per pixel. The image has been magnified by a factor of two to aid visibility.
PIA12714 Janus crop.jpg
Saturn's moon Janus shows the scars of impacts in this Cassini image of craters light and dark.

This view looks toward the Saturn-facing side of Janus (179 kilometers, 111 miles across). North on Janus is up and rotated 10 degrees to the right.

The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 7, 2010. The view was acquired at a distance of approximately 75,000 kilometers (46,000 miles) from Janus and at a Sun-Janus-spacecraft, or phase, angle of 39 degrees. Image scale is 448 meters (1,469 feet) per pixel.

The original NASA image has been modified by cropping, doubling the linear pixel density, and sharpening.
Himalia.png
Image of the moon Himalia taken by the Cassini spacecraft on 19 December 2000.
Europa-moon.jpg
This image shows a view of the trailing hemisphere of Jupiter's ice-covered satellite, Europa, in approximate natural color. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long. The bright feature containing a central dark spot in the lower third of the image is a young impact crater some 50 kilometers (31 miles) in diameter. This crater has been provisionally named "Pwyll" for the Celtic god of the underworld. Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. This image was taken on September 7, 1996, at a range of 677,000 kilometers (417,900 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its second orbit around Jupiter. The image was processed by Deutsche Forschungsanstalt fuer Luftund Raumfahrt e.V., Berlin, Germany.
Cordelia1 Mond.png
Dieses von der Weltramsonden Voyager 2 aufgenommene Bild zeigt neben den Ringen δ, γ, η, β, α, 4, 5 und 6 des Uranus, die Uranusmonde Cordelia und Ophelia.
Belinda.gif
벨린다.
Phoebe cassini.jpg
Phoebe, as imaged by the Cassini probe.
Methone - Best Image From Cassini.jpg
N00189072.jpg was taken on May 20, 2012 and received on Earth May 21, 2012. The camera was pointing toward METHONE, and the image was taken using the CL1 and CL2 filters. This image has not been validated or calibrated. A validated/calibrated image will be archived with the NASA Planetary Data System in 2013. Image rotated so that north is up. Original image had a pixel scale of 26.72 meters per pixel, but this has been enlarged by 2x to improve feature visibility.
Dione.jpg
This picture of Dione was take by Voyager 1 from a range of 162,000 kilometers on November 12, 1980. Many impact craters -- the record of the collision of cosmic debris -- are shown, the largest crater is less than 100 kilometers (62 miles) in diameter and shows a well-developed central peak. Bright rays represent material ejected from other impact craters. Sinuous valleys probably formed by faults break the moon's icy crust.
PallasHST2007.jpg
A black-and-white image of 2 Pallas taken with the Hubble Telescope in 2007 with UV filter.
Moon-galileo-color.jpg
This color image of the Moon was taken by the Galileo spacecraft at 9:35 a.m. PST Dec. 9, 1990, at a range of about 350,000 miles (560,000 km). The color composite uses monochrome images taken through violet, red, and near-infrared filters. The concentric, circular Orientale basin, 600 miles (970 km) across, is near the center; the nearside is to the right, the far side to the left. At the upper right is the large, dark Oceanus Procellarum; below it is the smaller Mare Humorum. These, like the small dark Mare Orientale in the center of the basin, formed over 3 billion years ago as basaltic lava flows. At the lower left, among the southern cratered highlands of the far side, is the South-Pole-Aitken basin, similar to Orientale but twice as great in diameter and much older and more degraded by cratering and weathering. The cratered highlands of the near and far sides and the Maria are covered with scattered bright, young ray craters.