Klimaanlage (Flugzeug)

Schematische Darstellung der Klimaanlage einer Boeing 737-300
Die Boeing 787 hat die Lufteinlässe zur Klimaanlage am Rumpf bei den Flügelwurzeln, da sie keine Zapfluft für die Klimaanlage verwendet

Eine Klimaanlage im Flugzeug (engl. environmental control system, ECS) umfasst vor allem die drei Systemkomponenten Luftaustausch, Druck- sowie Temperaturregelung in der Kabine des Flugzeugs für Besatzung, Passagiere und Gepäckräume. Verkehrsflugzeuge benötigen eine Klimaanlage, um den Passagieren bei Flughöhen bis über 11.000 Metern die notwendige Atmosphäre in der Kabine zu bieten, insbesondere mit genügend Luftdruck, einer ausreichenden Sauerstoffversorgung und einer angemessenen Umgebungstemperatur.

Im Vergleich zu „normalen“ Klimaanlagen, die vor allem zur Temperaturregelung dienen, z. B. in Gebäuden oder Fahrzeugen, kümmert sich das ECS in Flugzeugen zusätzlich um den Luftdruck sowie oft weiteren Aspekten der Umgebungsregelung. Die Klimaanlagen in Flugzeugen unterscheiden sich daher von den gewöhnlichen Klimaanlagen durch eine andere Konstruktion, eine Energiequelle mit wesentlich größerem Leistungsbedarf sowie hohen Sicherheitsanforderungen.

Größere Passagierflugzeuge mit mehreren Triebwerken haben in der Regel zwei bis drei redundante, voneinander unabhängige, parallel laufende Aggregate (engl. Pressurization & Air Conditioning Kits, abgekürzt packs). Genutzt wird Zapfluft, die sog. P2-Luft (engl. bleed air) vom Kompressor des Strahltriebwerkes. Diese Luft ist bis zu 200 °C heiß, hat je nach Abnahmestelle einen Überdruck von mehreren Bar, ist aber auch je nach Triebwerksausführung in der Menge begrenzt. Das System muss dazu abgestimmt sein, den Druck und die Temperatur in der Kabine zu halten. Der Innendruck wird dabei durch ein steuerbares Ablassventil im Rumpf des Flugzeuges (engl. outflow-valve) geregelt; die Temperatur wird je nach Bedarf geregelt durch Kühlung (bei Betrieb in Bodennähe) und gegebenenfalls elektrischer Zusatzheizung bei sehr kalter Außenluft im Fluge, sofern der Wärmeinhalt der Zapfluft nicht ausreicht. Meist muss die Frischluft noch befeuchtet werden, am Boden mitunter auch entfeuchtet. Am Boden und bei Flugzeugen ohne Strahltriebwerk erfolgt die „Klimatisierung“ oft mit Hilfe eines Hilfstriebwerks (engl. auxiliary power unit, APU).

Bei der Boeing 787 wird jedoch keine Zapfluft der Triebwerke verwendet, da die Klimaanlage elektrisch betrieben wird. Die Triebwerke haben zu diesem Zweck sehr starke Generatoren.

Um Energie für das Hilfstriebwerk zu sparen, dessen Wartungszyklen auszudehnen und eine Verbesserung der Luftqualität am Flughafen zu erreichen, rüsten immer mehr Flughäfen ihre Terminals mit PCA-Klimatisierungssystemen aus (PCA = pre-conditioned air), die an der Fluggastbrücke, über Bodentanks oder verbrennungskraftgetriebene Bodeneinheiten klimatisierte Luft an das Flugzeug übergeben. Dort wird bis zu −25 °C kalte Luft (typisch +2 °C) getrocknet und in das Flugzeug eingeblasen.[1]

Funktion und Hauptbaugruppen

Kühlturbine und Wärmeübertrager

Bild 1: Vapor Cycle Maschine (Legende: auf das Bild klicken)
Bild 2: Air-Cycle-Machine (ACM) = Kühlturbine – der Kern der Packs (Legende: auf das Bild klicken)
Bild 3: Funktion eines Packs (Legende: auf das Bild klicken)

Bild 1 zeigt die prinzipielle Arbeitsweise der beiden Wärmeübertrager (auch Wärmetauscher) bei einem Vapor Cycle System. Die Arbeitsweise entspricht der eines Kühlschranks bzw. einer Wärmepumpe.

Die Air-Cycle-Machine (Kühlturbine – Bild 2) ist das Herz der Klimaanlage eines Verkehrsflugzeugs. Sie enthält einen Radialkompressor (2), eine Turbine (7) und mehrere Wärmeübertrager (engl. heat exchanger), die aus der Zapfluft klimatisierte Luft erzeugen.

Die Zapfluft (Bild 3: (1)) mit einem Druck von ca. 3 bar und bis zu 200 °C Temperatur durchläuft den ersten Wärmeübertrager (Bild 3: (4)), der von der Außenluft (engl. ram air) gekühlt wird. Nach der Druckerhöhung und der damit verbundenen Erwärmung wird ein zweiter Wärmeübertrager (Bild 3: (6)) durchlaufen und danach die Turbine (Bild 3: (7)), in der die Luft expandiert und deshalb weiter abkühlt. Die Rotationsenergie der Turbine treibt wiederum über eine Welle (Bild 3: (20)) den Kompressor an. Am Ausgang der Turbine beträgt die Temperatur etwa 0 °C und wird mit Heißluft aus dem Zapfluft-System gemischt (Bild 3: (10)), um die gewünschte Temperatur zu erhalten.

Damit die Anlage auch am Boden funktioniert, werden hier die Wärmeübertrager von einem Gebläse, dem „Turbo-Fan“, mit Kühlluft versorgt. Der Turbo-Fan wird elektrisch (Boeing 727), durch einen Luftmotor (Boeing 737 Classic) oder mechanisch durch die Welle der Kühlturbine (Boeing 737-NG) angetrieben.

Bild 4: Environmental Control System der Boeing 737-300 (Umweltkontrollsystem) = Klimaanlage – am Boden – Packs eingeschaltet (Bild mit Legende) – (für ausführliche Erläuterungen der Zahlen bitte auf das Bild klicken)
Bild 5: Environmental Control System der Boeing 737-300 (Umweltkontrollsystem) = Klimaanlage – bei laufenden Triebwerken (Bild mit Legende) – (für ausführliche Erläuterungen der Zahlen bitte auf das Bild klicken)
Bedienfelder für Kabinendruck und Zapfluft in einer B737-800

Mischkammer

Die Mischkammer (engl. mixing chamber – Bild 5: (23)) ist die Misch- und Verteileinrichtung der Klimaanlage. Hier wird die Luft aus den Packs je nach Bedarf weiter mit Zapfluft angewärmt. Außerdem wird ein Teil der bereits benutzen und gefilterten Kabinenabluft mit Hilfe eines oder mehrerer Gebläse, den Recirculation Fans, zugemischt (Bild 5 – (18)). Ab hier wird die Luft zur Weiterverteilung bereitgestellt.

Auslassventil

Outflow Valve und Overpressure Relief Valve B737-800
Bild 6: Pressure Valve (Druckablassventil) am hinteren Druckschott; zusätzlich gibt es auch noch ein automatisches Notfallventil (engl. overpressure relief valve), falls die Pressure Valve versagt – sonst zerreißt es das Flugzeug wegen der hohen Druckdifferenz

Das Druckventil, auch outflow valve genannt, ist eine verstellbare Klappe im hinteren Teil der Druckkabine. Es regelt abhängig von der Flugphase den Innendruck. Am Boden ist es geöffnet und wird während des Starts automatisch durch den Kabinendruckregler (engl. cabin pressure controller) geregelt, um dann im Reiseflug einen Luftdruck wie in etwa 2400 Meter Höhe (bezogen auf Standardluftdruck) zu halten. Sollte die automatische Regelung des Kabinendrucks versagen, kann das Auslassventil auch elektrisch durch einen Handregler verstellt werden.

Sicherheitseinrichtungen

Sollte das Auslassventil nicht öffnen, bestünde die Gefahr eines gefährlichen Überdrucks in der Kabine. Deshalb befinden sich in der Flugzeughaut Überdruckventile (engl. overpressure-relief-valves), die bei einem Differenzüberdruck in der Kabine gegenüber außen von etwa 0,6 bar öffnen. Sollte das Auslassventil nicht schließen, die Klimaanlage versagen oder ein großes Loch in der Flugzeughaut entstehen, werden die über den Passagieren befindlichen Sauerstoffmasken automatisch aktiviert, wenn der Kabinendruck unter einen Luftdruck entsprechend etwa 4300 Meter Höhe absinkt.

Geschichte

Honeywell Aerospace hat 1940 den ersten Wärmeübertrager für Druckkabinen in die Boeing 307 Stratoliner eingebaut. 1944 wurde eine Luftausdehnungsturbine (engl. air expansion turbine) für die Kühlung der Kabine der Lockheed P-80 entwickelt, einer Druckkabine. Die erste Luftkreislaufklimaanlage (engl. air cycle ECS – environmental control system) wurde 1945 bei der Lockheed Constellation eingesetzt. Das erste „Dampfkreislaufkühlsystem“ (engl. aircraft-type vapor cycle cooling system) wurde 1956 von Honeywell Aerospace in der Lockheed L-188 Electra eingesetzt. Die Boeing 727 hatte 1961 das erste komplette „pneumatische Kreislauf-Umgebungsluft-Steuersystem“ (engl. pneumatic air cycle ECS – Environmental Control System).

Literatur

Lufthansa Flight Training – Airframe and systems 2, Verkehrsfliegerschule, Bremen März 2001

Weblinks

Einzelnachweise

  1. Didier Gendre, Nicolas Orvain, Dariusz Krakowski: Be cool, be efficient. In: Airbus FAST 62. Abgerufen am 24. Mai 2020.

Auf dieser Seite verwendete Medien

Outflow Valve and Pressure Relief Valve on a Boeing 737-800.jpg
Outflow Valve and Pressure Relief Valve on a Boeing 737-800
VCMFlugzeug.gif
Funktionsprinzip einer Flugzeugklimaanlage (Vapor Cycle Machine). Legende: (1) Kompressor - komprimiert das Kältemittel zu heißem Gas, das unter Druck steht. (2) Verflüssiger (beim Kühlschrank wäre er auf der Rückseite) - hier wird das heiße Gas abgekühlt und verflüssigt. (3) Den Verflüssiger verlässt das abgekühlte und verflüssigte Kältelmittel. (4) Weitere Unterkühlung im Verflüssiger durch einen kalten Luftstrom von außerhalb des Flugzeuges. (5) Die erwärmte Kühlluft wird wieder aus dem Flugzeug geleitet. (6) Entspanntes, kaltes Kältemittel tritt in den Verdampfer ein - hier erfolgt die Kühlung (die eigentliche Aufgabe der VCM). (7) Das Kältemittel hat im Verdampfer abgegeben Energie aufgenommen (ugs. Kälte abgegeben), ist dabei verdampft und verlässt wieder als leicht erwärmtes Gas den Verdampfer. (8) Warme Rezirkulations-Luft aus der Flugzeugkabine, die gekühlt werden muss, umströmt den Verdampfer. Dieser Luftstrom wird von einem Gebläse (recirculation fan) angetrieben. (9) Heruntergekühlte Rezirkulationsluft strömt wieder zur Passagierkabine und zum Cockpit; dieser Rezirkulationsluft wird teilweise Frischluft zugemischt (hier nicht dargestellt); der gesamte Kreislauf wird durch eine Pumpe angetrieben, die hier ebenfalls nicht dargestellt ist. (10) rot: heißes Kühlmittel (Gas, unter hohem Druck) (11) violett: erwärmts Kühlmittel (gasförmig) (12) blau: kaltes Kühlmittel (flüssig).
FlugzeugumrissHochdruckventil.png
Autor/Urheber: stefan, Lizenz: Copyrighted free use
pressure valve am hinteren Druckschott
Cabin pressure and Bleed air control panels on a Boeing 737-800.jpg
Cabin Pressure and Bleed Air Control Panels on a Boeing 737-800
ECSB737-300ENGINES ON.svg
Environmental Kontrol System ECS der Boeing 737-300, bei laufenden Treibwerken
(1) Zapfluft vom linken Triebwerk (engine bleed air - stark komprimiert, deshalb sehr heiß, hinter dem Kompressor abgezapft); (2) Kühlluft aus dem vorderen Triebwerksbereich (fan air - fast nicht komprimiert, deshalb fast nicht erwärmt; (3) Luft von der APU (APU-air - eine der Hauptaufgaben der APU, deshalb nicht nur einfach Zapfluft); (4) Anschluß für Druckluft aus dem Bodenstartgerät (ground service pneumatic connection); (5) Kühlluft aus dem vorderen Triebwerksbereich (fan air - fast nicht komprimiert, deshalb fast nicht erwärmt; (6) Zapfluft vom rechten Triebwerk (engine bleed air); (7) Abstellventil für die rechte Triebwerkszapfluft (engine bleed air valve) - wird z.B. zum Start kurzzeitig abgestellt, wenn die Triebwerke die volle Leistung geben sollen oder bei Triebwerksbrand oder wenn es im Triebwerk nach gebratenem Storch riecht (nach Vogelschlag); (8) Vorkühler rechts (1. Kühlstufe für die sehr heiße Zapfluft, precooler); (9) Isolierventil (isolation valve) - normalerweise geschlossen, kann vom Cockpit aus geöffnet werden, wenn ein Triebwerk ausfällt und beide Packs von einem Triebwerk aus betrieben werden sollen; (10) Vorkühler links (1. Kühlstufe für die sehr heiße Zapfluft, precooler); (11) Abstellventil für die linke Triebwerkszapfluft (engine bleed air valve); (12) leicht erwärmte Kühlluft (wird aus dem Flugzeug geleitet); (13) linkes Pack-Sperrventil (left pack valve); (14) rechtes Pack-Sperrventil (right pack valve); (15) leicht erwärmte Kühlluft (wird aus dem Flugzeug geleitet); (16) rechtes Pack (right pack - der eigentliche Kern der Klimaanlage - wird in einem anderen Bild ausführlich erläutert; sehr kompakt gebaut; eine "Kiste" mit ca. der Größe eines Schreibtisches (17) Anschluß für von außen zugeführter, voll aufbereiteter "Klimaanlagenluft" (ground preconditioned air connection); (18) Rezirkulationsluft (vom recirculation fan - Luft aus der Passagierkabine zur erneuten, zusätzlichen Kühlung); (19) linkes Pack (left pack); (20) Kühlluft für das Cockpit (das Cockpit bekommt immer völlig frisch aufbereitete Luft - falls sie rauchen wollen und zur allgemeinen Sicherheit; und keine teilweise verbrauchte Luft, wie die Passagiere; frische Luft ist aber wesentlich trockener - deshalb haben die Piloten wesentlich mehr mit den Folgen der trockenen Luft zu kämpfen, als die Passagiere); (21) zum Luftverteiler auf der linken Seite der Passagierkabine; (22) zum Luftverteiler auf der rechten Seite der Passagierkabine; (23) Luftmischkammer (mix manifold) ; (24) Eingabe für die Temperatursteuerung (Overheadpanel im Cockpit); (25) der rechte Drehschalter steuert die Temperatur für die Passagiere; (26) der linke Drehschalter steuert die Temperatur für das Cockpit und für die Passagiere (sollte ein Pack ausfallen oder abgeschaltet werden, muß hier manuell nachgeregelt werden, bis alle zufrieden sind oder der Flug zu Ende ist);(27) Bedienpanel zum Management der Zapfluft (Overheadpanel im Cockpit - bleed panel); (28) im fliegerischen Normalbetrieb stehen beide Schalter (rechts und links) auf Automatikbetrieb - das pack-valve (Ventil) wird so automatisch gesteuert - die packs bekommen je nach Bedarf mehr oder weniger Luft zugeführt; (29) Schalter für die Isolation valve (normalerweise geschlossen); (30) Schalter für die Luft aus der APU (die APU ist im flug normalerweise aus und der Schalter deshalb geschlossen; zum Start der APU muß der Schalter auch aus sein; erst wenn die APU läuft darf er wieder angeschaltet werden); (31) Zapfluft-Schalter für das rechte Triebwerk (muß zum engine start geschlossen sein); (101) Zapfluft (bleed air - sehr heiß, weil sie gerade im Triebwerkskompressor sehr stark komprimiert wurde; (102) Gebläseluft (fan air); (103) leicht erwärmte Gebläseluft; (104) pneumatische Zapfluft (pneumatic bleed - nicht mehr ganz so heiß, wie die ursprüngliche Zapfluft)
ACMFlugzeug.png
(c) RosarioVanTulpe, CC BY-SA 3.0
Air-Cycle-Maschine - Bestandteil einer Klimaanlge im Flugzeug und in anderen Kühlgeräten
  • Air Cycle Machine - ACM - der Kern der Packs: (1): heiße Hochdruck-Zapfluft von den Triebwerken; (2): Kompressor der Air-Cycle-Machine (ACM) - komprimiert und erhitzt die heiße Luft weiter; (3): Eintritt der heißen, komprimierten Luft in den Wärmetauscher - Abkühlung durch kalte Außenluft; (4): kalte Strömungsluft (ram air); (5): durch den Wärmeaustausch erwärmte Luft; (6): Austritt der abgekühlten Luft (immer noch unter hohem Druck) aus dem Wärmetauscher; (7): Druckminderung (Entspannung) der Luft in der Turbine - diese turbine treibt den Kompressor an; (8) Air-Cycle-Maschine (Kompressor triebt über eine Achse die turbine an - Energieinput durch die eintretende druckluft); (9): Mischkammer (mixing box); (10): Rezirkulationsluft aus der Kabine (recirculated cabin air); (11): recirculation fan - Ventilator zur Aufrechterhaltung der Luftzirkulation zwischen Kabine und Klimaanlage;(12): kühle Luft für die Kabine
Air inlet of conditionning packs of Boeing 787.jpg
Autor/Urheber: Olivier Cleynen, Lizenz: CC BY-SA 3.0
The air inlets (one open, the other shut) of one of the two air conditioning packs of a Boeing 787
PacksFlugzeug.gif
Autor/Urheber: stefan, Lizenz: CC BY-SA 3.0
Prinzipzeichnung einer allgemeinen Klimanalga (Packs) - kein bestimmter Flugzuegtyp
ECSB737-300ON GROUND PACK ON.png
Autor/Urheber: stefan, Lizenz: Copyrighted free use
ECS environmental control system boeing 737-300 am boden
KlimaanlageLeitungen 2.png
Autor/Urheber: Simonitis, Lizenz: CC BY-SA 3.0
aircraft - air conditioning