BMW N52

BMW.svg BMW
BMW N52 im BMW-Museum in München

BMW N52 im BMW-Museum in München

BMW N52
Produktionszeitraum:2004–2015
Hersteller:BMW.svg BMW
Funktionsprinzip:Otto
Motorenbauform:R6
Ventilsteuerung:DOHC
Hubraum:2497–2996 cm3
Gemischaufbereitung:Saugrohreinspritzung
Motoraufladung:keine
Leistung:130–200 kW
Max. Drehmoment:230–315 N·m
Masse:161 kg
Vorgängermodell:BMW M54
Nachfolgemodell:BMW N53

Der BMW N52 war ein Reihensechszylinder-Ottomotor von BMW, der erstmals 2004 im BMW 6er eingebaut wurde. Er folgte damit dem BMW M54-Motor, der aus dem Anfang der 1990er Jahre eingeführten BMW M50-Motor bzw. dessen Nachfolger dem BMW M52-Motor entwickelt wurde. Der N52 war komplett neu entwickelt, wobei im Vergleich zum M54 das Gewicht um 10 kg verringert, der Verbrauch um 12 % gesenkt und die Leistung um 20 kW gesteigert werden konnte.

Der N52 wurde in den Modellen des 3er (E90), 5er (E60) und im Z4 (E85/E86) verwendet, außerdem im 1er (E87, E81, E82, E88), Z4 (E89), X1 (E84), X3 (E83) und X5 (E70) sowie im 6er (E63/E64) und 7er (E65/E66).

Ab 2007 wurde der N52 vom BMW N53 abgelöst, der mit dem Facelift des BMW E60 erstmals produziert wurde. Die Produktion des BMW N52 wurde Ende 2015 eingestellt.

Konstruktion

Die Entwicklungsziele, die das Lastenheft für das Triebwerk mit der Projektbezeichnung NG6 vorsah, waren eine deutliche Leistungssteigerung, eine Drehmomenterhöhung im unteren Drehzahlbereich, eine deutliche Ausweitung des nutzbaren Drehzahlbereichs, eine signifikante Reduzierung des Kraftstoffverbrauchs (entkoppelt von der Kraftstoffqualität) und eine spürbare Gewichtsreduzierung trotz der höheren Leistungsanforderung und des Technologie-Mehraufwandes zur Verbrauchsreduzierung.

Verbrauchssenkende Maßnahmen

Neben der bewährten variablen Nockenwellensteuerung für die Ein- und Auslassnockenwelle (Doppel-VANOS in Aluminium-Leichtbauweise) zur Steuerung der Ventilöffnungszeiten wurde erstmals in einem Reihensechszylinder eine technische Neuerung integriert: Der vollvariable Ventiltrieb VALVETRONIC der zweiten Generation, welcher Drehzahlen bis 7000 min−1 ermöglicht und den Ventilhub, die Öffnungsdauer sowie die Steuerzeit der Ventile stufenlos regelt. Durch die Valvetronic wird die Einlassmenge der Luft nicht wie üblich über eine Drosselklappe geregelt, sondern über den variablen Ventilhub, der zwischen 0,25 mm und 9,8 mm verstellt werden kann. Die Änderung des Ventilhubs erfolgt über eine präzise Mechanik in Kombination mit einer Exzenterwelle, die über einen Steuermotor von VDO gestellt wird. Auf diese Weise übernehmen die Einlassventile die Funktion der Drosselklappe. Eine Drosselklappe ist zwar noch vorhanden, kommt aber nur in sehr wenigen Betriebszuständen unterstützend zum Einsatz und hat hauptsächlich die Funktion eines Notlaufsystems.

Durch die direkte Einlasssteuerung am Zylinder lassen sich die Strömungsverluste reduzieren. Zudem führt die höhere Einströmgeschwindigkeit zu einer besseren Verteilung des Benzin-Luft-Gemisches im Zylinder. Das Resultat ist ein im Vergleich zu herkömmlichen Drosselklappenmotoren wesentlich verbessertes Ansprechverhalten und zugleich eine effizientere Kraftstoffausnutzung. Somit erreichen die Verbrauchs- und Emissionswerte ein für diese Leistungsklasse außergewöhnlich geringes Niveau.

Das Wärmemanagement passt unabhängig von der Motordrehzahl über das Kennfeldthermostat und die elektrische Kühlmittelpumpe die Kühlleistung an. Die elektrische Kühlmittelpumpe kann unabhängig von der Drehzahl des Motors nach dem tatsächlichen Kühlungsbedarf gesteuert werden. Während konventionelle Kühlmittelpumpen bis zu 2 kW verbrauchen, reduziert sich die Leistungsaufnahme bei der bedarfsgerechten Regelung auf 200 Watt. Zusätzliche Vorteile der elektrischen Kühlmittelpumpe sind der Entfall einer zweiten Riemenebene und ein schnelleres Erreichen der Motorbetriebstemperatur, wodurch sich ein Verbrauchsvorteil von zwei Prozent ergibt.

Die volumenstromgeregelte Ölpumpe, deren Exzentrizität über Regelkolben verstellt werden kann, fördert in jedem Betriebszustand nur die tatsächlich erforderliche Ölmenge. Konventionelle Pumpen würden bis zu 2 kW mehr an Leistung benötigen.

Mit der dreistufigen Resonanzsauganlage wird ein höheres Drehmoment bei niedrigen Drehzahlen und eine höhere Leistung bei hohen Drehzahlen erreicht.

Durch den Öl-Wasser-Wärmeübertrager erreicht der Motor in der verbrauchsintensiven Warmlaufphase schneller seine Betriebstemperatur. Bei sehr hohen Öltemperaturen wird über den Wärmeübertrager Wärme an die Motorkühlung abgegeben.

Der Grundmotor wurde insgesamt reibungsreduziert und die Motorsteuerung an die deutlich erweiterten Funktionsumfänge angepasst.

Des Weiteren war der N52 gegenüber dem Vorgängermotor M54 nun auch im Volllast-Betrieb über die Lambdasonden kraftstoffmengengeregelt. Das senkte im Volllast-Betrieb den Kraftstoffverbrauch und verbesserte die Abgaswerte wie den Gehalt an Kohlenmonoxid (CO), Kohlenwasserstoff (HC), Stickoxide (NOx) und vor allem von Benzol.

Konsequenter Leichtbau

Mg-Al-Verbundguss-Kurbelgehäuse des BMW N52

Mit einem Gesamtgewicht von 161 kg war der 3-Liter-Motor der leichteste Sechszylinder in dieser Leistungsklasse. Erzielt wurde das geringe Gewicht unter anderem mithilfe eines neuartigen Magnesium-Aluminium-Verbundguss-Kurbelgehäuses. Weil sich Magnesium weder als Laufflächenwerkstoff noch als Material für ein Kühlmittel führendes Bauteil eignet, wurde eine Verbundkonstruktion mit einem AlSi17-Insert und einem Magnesium-Umguss entwickelt. BMW setzte damit zum ersten Mal eine Magnesiumlegierung in der Großserienfertigung eines wassergekühlten Kurbelgehäuses ein. Das Gehäuse ist rund 24 % leichter als ein vergleichbares Bauteil aus Aluminium oder 57 % als eines aus Grauguss. Die Zylinderkopfhaube des Motors besteht ebenfalls aus Magnesium.

Durch einen Leichtbau-Tiefziehflansch wurde am Fächerkrümmer eine erhebliche Gewichtsreduzierung erreicht. Die Wandstärke des Abgaskrümmer-Flansches konnte auf 2 mm verringert werden und er wurde damit 800 g leichter. Die Dünnwand-Keramikkatalysatoren sind kleiner und leichter als bisher. Sie erreichen schneller ihre Betriebstemperatur und machen eine Sekundärluft-Einblasung überflüssig.

Die gebauten Leichtbau-Nockenwellen wurden im Innenhochdruck-Umformverfahren hergestellt. Sie sind um 25 % leichter als konventionelle Nockenwellen und die Gewichtsersparnis lag in Summe bei 1,2 kg.

Technische Daten

N52B30 in einem BMW 530i (E60)
BauartReihen-Sechszylinder
MarkteinführungSeptember 2004 im BMW 630Ci
Maximale Leistung190 kW / 258 PS bei 6600 min−1
Maximales Drehmoment300 Nm bei 2500–4000 min−1
BrennverfahrenSaugmotor / Lambda = 1,0 / VALVETRONIC Laststeuerung
Hubraum effektiv2996 cm3
Verdichtungsverhältnis10,7 : 1
Bohrung × Hub85 mm × 88 mm
KurbelgehäusematerialMagnesium mit Aluminium-Insert; Zylinderlauffläche aus Alusil
Zylinderabstand91 mm
PleuelCrack-Technologie, Trapezpleuel
Nockenwellenzwei kettengetriebene Nockenwellen (gebaute Nockenwelle in Hydroumformtechnik), siebenfach gelagert und feinstgewuchtet
Nockenwellenverstellunghydraulisch stufenlos variable Phasenverstellung der Einlass- und Auslassnockenwelle (Doppel-VANOS)
VentiltriebRollenschlepphebel, hydraulischer Ventilspielausgleich, VALVETRONIC
Ventile pro Zylinder4
Sauganlagedreistufige Resonanzsauganlage
Motorgewicht nach BMW Richtlinie161 kg
Motorsteuerung / Gemisch-
aufbereitung / Zündung
Digitale Motorsteuerung mit integrierter VALVETRONIC-Steuerung MSV70; sequenzielle Multipoint-Saugrohr-Einspritzung, Einzelzündspulen, Klopfregelung
KraftstoffROZ 91–100+ (Leistungsangabe bezieht sich auf ROZ 98)
Zertifiziertes EmissionsniveauEU4 / ULEV II
AbgassystemEinzelrohrkrümmer mit Leichtbau-Flansch und 2 motornahen Dreiwege-Hauptkatalysatoren
KühlungElektrische Kühlmittelpumpe; kennfeldgesteuerte Kühlmitteltemperatur

Motorenübersicht

MotortypHubraumBohrung × HubZylinderVentileLeistung bei 1/minDrehmoment bei 1/minMaximaldrehzahlJahr
N52B252,5 l (2497 cm3)82 mm × 78,8 mmR64130 kW (177 PS) bei 5800230 Nm bei 3500–50007000 min−12005–2008
150 kW (204 PS) bei 6400250 Nm bei 2750–30007000 min−12009–2011
160 kW (218 PS) bei 6500250 Nm bei 2750–42507000 min−12005–2010
N52B303,0 l (2996 cm3)85 mm × 88 mmR64160 kW (218 PS) bei 6100270 Nm bei 2400–42007000 min−12007
190 kW (258 PS) bei 6600300 Nm bei 2500–40007000 min−12004–2007
190 kW (258 PS) bei 6600310 Nm bei 2600–30007000 min−12009–2012
195 kW (265 PS) bei 6650315 Nm bei 27507000 min−12005–9/2009
200 kW (272 PS) bei 6650315 Nm bei 27507000 min−12006

N52 steht jeweils für den Grundmotor ("N" = Neue Motorengeneration, "5" = 6-Zylinder, "2" = Valvetronic), B25/B30 bezeichnet die Kraftstoffart inkl. der Einbaulage ("B" = Benzin- und Längsmotor) und den Hubraum ("25" = 2,5 Liter / "30" = 3,0 Liter)

Verwendung

N52B30 in einem BMW 130i
N52B30 in einem BMW Z4 3.0si

N52B25

N52B30

Literatur

  • Annette Lichy, Thilo Hoffmann, Peter Kinninger (Redaktion), Klaus Borgmann (Chefredaktion): Der neue BMW Reihensechszylinder Ottomotor. Hrsg.: BMW AG München, Entwicklung Antrieb. Becker Artware, 2004 (Firmenpublikation).

Weblinks

Commons: BMW N52 – Sammlung von Bildern
Zeitleiste der BMW-Ottomotoren für Pkw seit 1961
Zahl der ZylinderKonzeption1960er1970er1980er1990er2000er2010er
01234567890123456789012345678901234567890123456789012345678
31,5 lB38
4(1,5–2,0 l)M10
M40
M42
M43
M44
N40
N42
N45
N46
N43
N13
N20
B48
HochleistungsmotorS14
6Kleiner Sechszylinder (2,0–3,0 l)M20
M50
M52
M54
Großer Sechszylinder (2,5–3,5 l)M30
N52
N53
N54
N55
B58
HochleistungsmotorM88
S38
S50
S52
S54
S55
83,0–4,4 lM60
M62
N62
N63
HochleistungsmotorS62
S63
S65
10HochleistungsmotorS85
125,0–6,6 lM70
M73
N73
N74
HochleistungsmotorS70
Zahl der ZylinderKonzeption01234567890123456789012345678901234567890123456789012345678
1960er1970er1980er1990er2000er2010er

Auf dieser Seite verwendete Medien

BMW-N52 Einlassseite.jpg
Autor/Urheber: Olli1800, Lizenz: CC BY-SA 3.0
Schnittmodell eines BMW-N52-Motors, Institut für Angewandte Materialien – Werkstoffkunde (IAM–WK), Karlsruher Institut für Technologie (KIT)
BMW-N52 Frontansicht.jpg
Autor/Urheber: Olli1800, Lizenz: CC BY-SA 3.0
Schnittmodell eines BMW-N52-Motors, Institut für Angewandte Materialien – Werkstoffkunde (IAM–WK), Karlsruher Institut für Technologie (KIT)
BMW E89 Engine.jpg
BMW Z4 Engine. N52B30 engine 195kW/315Nm under the hood of Z4 3.0si Roadster. The long hood makes the whole engine fully visible.
N52B25AF in einem BMW 523Li (F18).jpg
Autor/Urheber: Lanju98, Lizenz: CC BY-SA 4.0
Der BMW 523Li wurde ausschließlich im asiatischen Markt verkauft.
BMW-N52 DetailValvetronic.jpg
Autor/Urheber: Olli1800, Lizenz: CC BY-SA 3.0
Schnittmodell eines BMW-N52-Motors, Institut für Angewandte Materialien – Werkstoffkunde (IAM–WK), Karlsruher Institut für Technologie (KIT)
BMW-N52 Front-Seite.jpg
Autor/Urheber: Olli1800, Lizenz: CC BY-SA 3.0
Schnittmodell eines BMW-N52-Motors, Institut für Angewandte Materialien – Werkstoffkunde (IAM–WK), Karlsruher Institut für Technologie (KIT)
BMW 6-cylinder block Al-Mg.jpg
Autor/Urheber: 160SX (talk), Lizenz: CC BY-SA 3.0
Kokillenguss (Hybridguss): Zylinderblock einer Sechszylindermaschine der BMW Serie N52.
  • Aluminiumdruckguss (Zylinder, Kühlkanäle und Lager der Kurbelwelle)
  • Magnesiumdruckguss (Ummantelung).
BMW-N52 BMW-Museum.jpg
Autor/Urheber: Olli1800, Lizenz: CC BY-SA 3.0
BMW N52 Reihensechszylinder im BMW-Museum München
JK N52B30 2.jpg
BMW N52B30 engine. Photographed by me, Jussi P. Korkala 09/08/2006 under the hood of my own BMW 130i M Sport.

I am donating this picture to the N52-engine page so we can have a picture of the engine there too, so I'm releasing it to the public domain, and only this particular picture, not any others.

More pictures of my car can be found at http://www.korkala.com/130iM/ - including larger version of this picture, not cropped, not resized. Those larger versions are (C) by me. This small resized image that I am uploading, I'm giving away.
BMW.svg
BMW-Logo (1997–2020)
BMW-N52 DetailVanos.jpg
Autor/Urheber: Olli1800, Lizenz: CC BY-SA 3.0
Schnittmodell eines BMW-N52-Motors, Institut für Angewandte Materialien – Werkstoffkunde (IAM–WK), Karlsruher Institut für Technologie (KIT)
BMW-N52 DetailZylinder.jpg
Autor/Urheber: Olli1800, Lizenz: CC BY-SA 3.0
Schnittmodell eines BMW-N52-Motors, Institut für Angewandte Materialien – Werkstoffkunde (IAM–WK), Karlsruher Institut für Technologie (KIT)
BMW N52B30A Engine 01.JPG
BMW N52B30A 3.0L Straight6 Engine on BMW E60 530i